
Computability and Computational Complexity, A.Y. 2025–2026

Guide to the answers
Friday February 20, 2026

Exercise 1

1.1) Show that the set R of recursive languages is closed with respect to:

• language union (i.e., if L1, L2 ∈ R then L1 ∪ L2 ∈ R),

• language intersection (if L1, L2 ∈ R then L1 ∩ L2 ∈ R) and

• language complementation (if L ∈ R then L̄ = Σ∗ \ L ∈ R).

1.2) What can be said about the set RE of recursively enumerable languages?

Solution 1

1.1) If languages L1, L2 ∈ R, it means that there are Turing machinesM1 andM2 that decide
the two languages:

∀s ∈ Σ∗ M1(s) =

{
1 if s ∈ L1

0 otherwise
M2(s) =

{
1 if s ∈ L2

0 otherwise

In particular, both machines will always halt.

• The following machine will accept s whenever it belongs to L1 or L2 and reject it other-
wise (hence it decides is s ∈ L1 ∪ L2):

– RunM1(s); if it accepts, then accept and halt;

– otherwise, runM2(s); if it accepts, then accept and halt;

– otherwise, since both machines rejected s, reject and halt.

Since the machine decides L1 ∪ L2, language union is still recursive.

• The following machine will accept s whenever it belongs to both L1 and L2 and reject it
otherwise (hence it decides is s ∈ L1 ∩ L2):

– RunM1(s); if it rejects, then reject and halt;

– otherwise, runM2(s); if it rejects, then reject and halt;

– otherwise, since both machines accepted s, accept and halt.

The machine decides L1 ∩ L2, intersection is recursive too.

• To decide the complement of language L1, we just need to reverseM1’s answer:

– RunM1(s); if it accepts, then reject and halt;

– otherwise, accept and halt.

This machine decides L̄1 which is therefore recursive.

1.2) If languages L1, L2 ∈ RE, the Turing machinesM1 andM2 are not guaranteed to halt if
the string is not in the language (they recognize it but are not guaranteed to decide it):

∀s ∈ Σ∗ M1(s) =

{
1 if s ∈ L1

̸= 1 otherwise
M2(s) =

{
1 if s ∈ L2

̸= 1 otherwise

where “̸= 1” can be interpreted as “reject or run forever.”

• Toprove closure with respect to language union, we need to alternate steps of both ma-
chines, accepting whenever one of the two halts. The following machine will accept s
whenever it belongs to L1 or L2 (hence it accepts is L1 ∪ L2):

– Initialize the simulation ofM1(s) andM2(s);

– repeat:

* Run the next step ofM1(s); if it accepts, then accept and halt;

* otherwise, run the next step ofM2(s); if it accepts, then accept and halt;

This machine halts in an accepting state as soon as either M1(s) or M2(s) accepts,
otherwise it runs forever. It accepts L1 ∪ L2, which is therefore recursively enumerable.

• For the intersection, the same construction shown in 1.1 still works. The following ma-
chine will accept s whenever it belongs to both L1 and L2 (hence it accepts L1 ∩ L2):

– RunM1(s); if it rejects, then reject and halt;

– otherwise, runM2(s); if it rejects, then reject and halt;

– otherwise, since both machines accepted s, accept and halt.

If eitherM1(s) orM2(s) doesn’t halt, then the machine runs forever, thereby not accept-
ing s, as intended. This machine therefore accepts L1∩L2, which is therefore recursively
enumerable.

• Finally RE is not close under complementation. In fact, if both L and L̄ are RE, it
means that we have both a machine M that accepts L and a machine M̄ that accepts
its complement. Then we could build the following machine that alternates the steps of
M(s) and M̄(s):

– Initialize the simulation ofM(s) and M̄(s);

– repeat:

* Run the next step ofM(s); if it accepts, then accept and halt;

* otherwise, run the next step of M̄(s); if it accepts, then reject and halt;

We are guaranteed that either M(s) or M̄(s) will halt and accept; therefore, the con-
structed machine will either accept s if s ∈ L or reject s if s ∈ L̄. Therefore it decides L,
which is thus recursive.
Therefore, closure wrt complementation only works for recursive languages.

Exercise 2
The FACTORING language is the decision version of the prime factoring problem. It contains
all integer pairs (N, k) such that N has a proper divisor not greater than k:

FACTORING = {(N, k) ∈ N2 | ∃m : 1 < m ≤ k ∧N modm = 0}.

In other words, N is divisible by some number greater than 1 but not larger than k. For instance:

• (36, 3) ∈ FACTORING, because N = 36 is divisible by m = 2 (which is smaller than
k = 3);

• (35, 4) ̸∈ FACTORING, because the smallest proper divisor of N = 35 is 5, which is
larger than k = 4 (i.e, no number m between 2 and k = 4 divides N = 35).

2.1) Write an algorithm (in any language or pseudocode you like) that decides FACTORING.
Assuming that integers are encoded with a positional system (e.g. binary), show that your
algorithm runs in exponential time with respect to the input size.
2.2) Prove that FACTORING ∈ NP.
2.3) Prove that FACTORING ∈ coNP.
Hint — For point 2.1, just iterate over all values of m = 2, . . . , k; when you discuss the
algorithm’s complexity, remember that N and k are the input values, but the input size is much
less.
If, against all odds, you find a polynomial-time algorithm, you should publish your answer on
a major Math or CS journal.

Solution 2
2.1) Consider the following algorithm:

• On input (N, k):

– for m = 2, . . . , k:

* if N modm = 0 then accept and halt

– Reject and halt

This algorithm clearly decides FACTORING by iterating through all possible divisors of N
from 2 to k, and rejects if none is found. While we can assume that arithmetic operations take
polynomial time wrt the operand sizes, the whole algorithm is contained in a loop that, on the
worst case, requires O(k) iterations.
Remember, however, that the size of the input is given by the number of digits needed to repre-
sent the input. Let |k| be the size of k: then |k| = O(log k); therefore, the number of iterations
is O(2|k|), which is exponential wrt the size of the input (the input also includes N , but it also
have logarithmic size).
Even though we can envision many optimizations, nobody has been able to provide a polynomial-
time decision algorithm.
2.2) To prove (N, k) ∈ FACTORING, a suitable certificate is the divisor m. Its size is clearly
polynomial (since m ≤ k), and we need to check that it satisfies all requirements: 2 < m ≤ k
and N modm = 0; both operations can be performed in polynomial time.
The existence of the polynomial certificate meand FACTORING ∈ NP.
2.3) To prove that (N, k) ̸∈ FACTORING, we must prove that no suitable m exists. The
certificate is the prime factorization of N , consisting of l prime numbers p1, . . . , pl, possibly

repeated. Each such number is clearly less than N , and there is at most a logarithmic number
of prime factors; therefore, the size of the certificate is polynomial wrt the size of N . To check
the certificate, we need to verify the following:

• that all pi’s are prime (a polytime check exists),

• that their product is indeed N (multiplication is polytime),

• finally, that all pi’s are larger than k: this ensures that no proper divisor m of N can be
found in {2, . . . , k}.

The existence of a polynomial certificate for a negative answer means FACTORING ∈ coNP.

Exercise 3
Let G = (V,E) be a directed graph (meaning that its edges are ordered pairs: E ⊆ V × V).
A cycle in G is a sequence of k ≥ 2 vertices v1, . . . , vk ∈ V such that consecutive vertices are
connected by an edge in the correct direction:

∀i = 1, . . . , k − 1 (vi, vi+1) ∈ E,

and the last vertex is connected to the first:

(vk, v1) ∈ E.

We define the language

HAS CYCLES = {G|G is a directed graph and contains at least one cycle}.

For example, consider the three directed graphs:

G1 G2 G3

Then:

• G1 ̸∈ HAS CYCLES (it doesn’t contain cycles);

• G2, G3 ∈ HAS CYCLES because both contain at least a cycle (highlighted).

3.1) Prove that HAS CYCLES ∈ P.
3.2) Prove that HAS CYCLES ∈ NL.
Hint — While some (pseudo-) code would be ideal, a word-only high-level description of the
decision algorithms is fine.

Solution 3

3.1) Since we know that NL ⊆ P, the proof of point 3.2 would imply HAS CYCLES ∈ P.
However, let us also see a possible algorithm; if we don’t care much about efficiency (but still
wand everything to be polynomial), we can iterate through all nodes and, for each of them,
follow all paths and se if we meet the same node again.

• for s ∈ V :

– queue← [s]

– visited← {}
– step← 0

– repeat as long as queue is not empty:

* v ← queue.extract()

* for v′ such that (v, v′) ∈ E and v′ ̸∈ visited:
· if v′ = s: accept and halt
· queue.insert(v′)
· visited← visited ∪ {v}

• Reject

The algorithm iterates all nodes s and visits all nodes reachable from s. If it meets s again during
the search, then the graph has a cycle and the algorithm halts. If the iteration ends without ever
repeating a node, the last line rejects.
Observe that the algorithm is composed of three nested loops, each running for at most |V |
iterations. Therefore, its time complexity is polynomial and HAS CYCLES ∈ P.
3.2) Consider the following algorithm, inspired by the non-deterministic algorithm for STCON:

• Non-deterministically choose s ∈ V .

• v ← s

• Repeat for at most |V | iterations:

– Non deterministically choose v′ such that (v, v′) ∈ E.

– If v′ = s accept and halt.

– v ← v′.

• Reject.

The “lucky” branch of the computation chooses the initial node s in the cycle (if there is one)
and follows the right path leading to s itself, ending with acceptance.
If there are no cycles, then no branch is lucky and they all reject.
Observe that the algorithm uses a fixed number of variables, each referring to a node in the
graph, and a counter All such variables require O(log |V |) space. Therefore, the whole non-
deterministic algorithm requires O(log |V |) space too.

