

Written test

Wednesday January 7, 2026

Exercise 1

1.1) Is the HALT language **NP**-hard?

1.2) Is HALT **NP**-complete?

Hint — *Motivate your answer starting from the relevant definitions. While this question has a definitely correct answer, you are allowed to express well-motivated doubts!*

Exercise 2

An instance (k, G) of the CLIQUE language (where k is the required clique size and G is an undirected graph) is encoded with alphabet $\Sigma = \{_, 0, 1, +\}$ as follows:

- the binary encoding of k ,
- followed by a blank cell,
- followed by the adjacency matrix of G , where every row is represented as a sequence of 0's and 1's, and rows are separated by a + symbol.

2.1) Does the instance encoded by the following string belong to the CLIQUE language or not?

11_0101+1010+0101+1010

2.2) Write a Turing machine that performs a reduction from the INDEPENDENT SET to the CLIQUE language, using the same encoding for the instances (k, G) of both languages. What is the time complexity of the reduction?

Exercise 3

For each of the following properties of Turing machines \mathcal{M} , prove whether it's computable or not. Invoke Rice's theorem whenever it applies.

$$\mathcal{P}_1 = \{\mathcal{M} : \mathcal{M} \text{ accepts at least one input string}\}$$

$$\mathcal{P}_2 = \{\mathcal{M} : \mathcal{M} \text{ accepts all input strings}\}$$

$$\mathcal{P}_3 = \{\mathcal{M} : \mathcal{M} \text{ computes the Kolmogorov complexity of the input string}\}$$

$$\mathcal{P}_4 = \{\mathcal{M} : \mathcal{M} \text{ halts on all input strings of length } \leq 10\}$$

$$\mathcal{P}_5 = \{\mathcal{M} : \mathcal{M} \text{ halts in no more than 10 steps on all input strings}\}.$$