
Computability and Computational Complexity, A.Y. 2024–2025

Guide to the answers
Wednesday, June 11, 2025

Exercise 1

1.1) Prove that the two following problems belong to NP:

P1: Given a finite list L of unordered pairs of persons, where {a, b} ∈ L means “a and b know
each other”, and a positive integer k, is there an individual who knows at least k other
people?

P2: Given a finite list L of unordered pairs of persons, where {a, b} ∈ L means “a and b
know each other”, and a positive integer k, is there a group of k people who all know
each other?

1.2) Prove the two following statements:

If P2 ∈ P then P = NP.

If P1 is NP-complete then P2 ∈ P.

Hint — Here is a list of languages that you can assume to be NP-complete without having
to prove it: SATISFIABILITY, 3-SATISFIABILITY, CLIQUE, INDEPENDENT SET, INTEGER
LINEAR PROGRAMMING, VERTEX COVER, 3-VERTEX COLORING, SUBSET SUM, KNAP-
SACK, HAMILTONIAN PATH, DIRECTED HAMILTONIAN CYCLE, HAMILTONIAN CYCLE,
TRAVELING SALESMAN PROBLEM.

Solution 1
1.1)

• “P1 ∈ NP”: a polynomial certificate is simply the ID x of the individual who knows at
least k others. To check the certificate, we just need to count the number of distinct pairs
in L that contain x. This can be solved polynomially with list scans (the exact complexity
depending on what guarantees we have on the list, e.g.: are any pairs repeated?).
Otherwise, we can directly prove that ¶1 ∈ P (see the second proposition in point 1.2,
where we need to prove it anyway).

• “P2 ∈ NP”: this time, a polynomial certificate can be given as a list of IDs of k individuals
x1, . . . , xk. After checking that all IDs are distinct, we verify that {xi, xj} ∈ L for
i, j = 1 . . . k (with many possible, but irrelevant, optimizations).

1.2)
• “If P2 ∈ P then P = NP”: P2 is clearly equivalent to CLIQUE. In particular, CLIQUE ≤P

P2 Therefore, P2 ∈ P ⇒ CLIQUE ∈ P. However, CLIQUE is NP-complete, therefore
any other problem in NP is polynomially reducible to it.

• “If P1 is NP-complete then P2 ∈ P”: we can easily prove that P1 ∈ P by providing an
algorithm for it: set a counter ci = 0 for each individual i, scan L and for every {i, j} ∈ L
increment both ci and cj . As soon as a counter get to k, accept; if the scan terminates,
reject. If P1 were NP-complete, then every problem in P ∈ NP would be reducible to it,
and would therefore be polynomial.



Exercise 2
For each of the following properties of Turing machines M, prove whether it is recursive or
not. Whenever possible, use Rice’s theorem.
2.1) M either performs less than 100 steps or runs forever when executed on an empty tape;
2.2) M never visits any state more than ten times when executed on an empty tape;
2.3) M recognizes Turing machines with more states than alphabet symbols.

Solution 2

2.1) Non-recursive. The property is not trivial because clearly there are machines with that
property and machines without it, however it is not semantic (e.g., a machine might recognize
the empty language and reject immediately, or run 101 dummy states and then reject), therefore
we cannot use Rice’s theorem. We could use a TM computing P1 to test for M ∈ HALTε in
two ways:

• create M′ by adding 100 dummy states at the beginning of M, so that M′ must run for
at least 100 steps and behaves exactly like M in every other aspect, then test M′ ∈ P1;

• or test M ∈ P1 and, if yes, simulate a run of M(ε) for at most 100 steps to see whether
it halts within 100 steps; if not, it will run forever.

2.2) Recursive. Again, the property is neither trivial nor semantic, so Rice’s Theorem cannot
be applied. However, to check whether M ∈ P2 we just need to maintain a counter for every
state of M and simulate the computation M(ε) increasing a counter whenever the computation
visits the corresponding state. As soon as one counter exceeds 10, we reject (if M runs forever,
we are guaranteed that this will eventually happer, because the number of states is finite). If the
computation halts before any counter exceeds 10, then we accept.
2.3) Non-recursive. The definition clearly defines a language (the actual meaning of the defi-
nition is “M recognizes the language of all TM descriptions that. . . ”), but it is not trivial (it is
possible to build a TM with the property of recognizing TMs with more states than symbols).
Rice’s theorem applies.



Exercise 3
Consider the following Boolean circuit representing a Boolean function y = f(x1, x2):

x1

x2

y

3.1) Write the function f in terms of the Boolean operators ∧ (and), ∨ (or) and ¬ (not) on the
two variables x1 and x2.
3.2) Write a 3CNF formula on the three variables x1, x2 and y (and, if needed, other auxiliary
variables for gate outputs) that is satisfiable if and only if y = f(x1, x2) (i.e., if x1, x2 and y
have values that are compatible with the given Boolean circuit).
Hint — Point 3.2 can be solved in two ways: by directly writing the dependency as y ⇔
f(x1, x2) and applying Boolean algebraic rules to work out a 3CNF formula, or by writing
down a 3CNF formula for each gate and requiring them all to be true. The second way is the
one discussed in the course.

Solution 3
3.1) Just translate the circuit into a Boolean formula:

f(x1, x2) = ¬x1 ∨ (x1 ∧ x2).

The formula can actually be simplified (but non requested in the exercise) by distributing the
“or”, then removing the first clause, that is always true:

f(x1, x2) = (¬x1 ∨ x1) ∧ (¬x1 ∨ x2)

= ¬x1 ∨ x2.

3.2) We can answer this in at least three ways (any method is acceptable):

• As suggested in the exercise text:

y ⇔ (¬x1 ∨ x2)

≡
(
y ⇒ (¬x1 ∨ x2)

)
∧
(
(¬x1 ∨ x2) ⇒ y

)
≡ (¬y ∨ ¬x1 ∨ x2) ∧

(
¬(¬x1 ∨ x2) ∨ y

)
≡ (¬y ∨ ¬x1 ∨ x2) ∧

(
(x1 ∧ ¬x2) ∨ y

)
≡ (¬y ∨ ¬x1 ∨ x2) ∧ (x1 ∨ y) ∧ (¬x2 ∨ y).

• By following the second suggestion: define a variable for the outputs of the two “internal”
gates (e.g., g¬ for the “not”, g∧ for the “and” gate), then write a conjunction of the CNFs
for the single gates:

(g¬ ⇔ x1) ∧ (g∧ ⇔ (g¬ ∧ x2)) ∧ (y ⇔ (g¬ ∨ g∧))

≡ (g¬ ∨ x1) ∧ (¬g¬ ∨ ¬x1)

∧(¬g∧ ∨ g¬) ∧ (¬g∧ ∨ x2) ∧ (g∧ ∨ ¬g¬ ∨ ¬x2)

∧(¬y ∨ g¬ ∨ g∧) ∧ (y ∨ ¬g¬) ∧ (y ∨ ¬g∧).

This is the standard, “foolproof” way to do it, but it is much more cumbersome and
requires more variables.



• Another method, mentioned during the course but not in the notes, uses the circuit’s truth
table:

x1 x2 y
F F T
F T T
T F F
T T T

Therefore, the requested CNF would have the following truth table, where the “true” rows
are the ones that appear in the table above:

x1 x2 y CNF
F F F F
F F T T
F T F F
F T T T
T F F T
T F T F
T T F F
T T T T

Finally, a disjunctive clause can be used to exclude one line. For example, ¬x1 ∨ x2 ∨ y
is true for all lines with the exception of the fifth one (TFF). Therefore, our CNF can be
described by the following:

(x1 ∨ x2 ∨ y) (exclude the 1st line)
∧ (x1 ∨ ¬x2 ∨ y) (exclude the 3rd line)
∧ (¬x1 ∨ x2 ∨ ¬y) (exclude the 6th line)
∧ (¬x1 ∨ ¬x2 ∨ y) (exclude the 7th line)

Note that with further manipulation this formula can be reduced to the first one (collect
x1 ∨ y from the first two clauses, and collect ¬x2 ∨ y from the second and the fourth
clause).


