Computability and Computational Complexity, A.Y. 2024–2025 Written test

Wednesday, June 11, 2025

Exercise 1

1.1) Prove that the two following problems belong to **NP**:

- P_1 : Given a finite list L of unordered pairs of persons, where $\{a, b\} \in L$ means "a and b know each other", and a positive integer k, is there an individual who knows at least k other people?
- P_2 : Given a finite list L of unordered pairs of persons, where $\{a, b\} \in L$ means "a and b know each other", and a positive integer k, is there a group of k people who all know each other?

1.2) Prove the two following statements:

If $P_2 \in \mathbf{P}$ then $\mathbf{P} = \mathbf{NP}$.

If P_1 is **NP**-complete then $P_2 \in \mathbf{P}$.

Hint — Here is a list of languages that you can assume to be **NP**-complete without having to prove it: SATISFIABILITY, 3-SATISFIABILITY, CLIQUE, INDEPENDENT SET, INTEGER LINEAR PROGRAM-MING, VERTEX COVER, 3-VERTEX COLORING, SUBSET SUM, KNAPSACK, HAMILTONIAN PATH, DIRECTED HAMILTONIAN CYCLE, HAMILTONIAN CYCLE, TRAVELING SALESMAN PROBLEM.

Exercise 2

For each of the following properties of Turing machines \mathcal{M} , prove whether it is recursive or not. Whenever possible, use Rice's theorem.

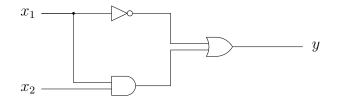
2.1) \mathcal{M} either performs less than 100 steps or runs forever when executed on an empty tape;

2.2) \mathcal{M} never visits any state more than ten times when executed on an empty tape;

2.3) \mathcal{M} recognizes Turing machines with more states than alphabet symbols.

Exercise 3

Consider the following Boolean circuit representing a Boolean function $y = f(x_1, x_2)$:



3.1) Write the function f in terms of the Boolean operators \land (and), \lor (or) and \neg (not) on the two variables x_1 and x_2 .

3.2) Write a 3CNF formula on the three variables x_1 , x_2 and y (and, if needed, other auxiliary variables for gate outputs) that is satisfiable if and only if $y = f(x_1, x_2)$ (i.e., if x_1, x_2 and y have values that are compatible with the given Boolean circuit).

Hint — Point 3.2 can be solved in two ways: by directly writing the dependency as $y \Leftrightarrow f(x_1, x_2)$ and applying Boolean algebraic rules to work out a 3CNF formula, or by writing down a 3CNF formula for each gate and requiring them all to be true. The second way is the one discussed in the course.