
Computability and Computational Complexity, A.Y. 2024–2025

Guide to the answers
Monday, February 17, 2025

Exercise 1
The following example appears in the Clay Institute webpage to motivate the inclusion the P
vs. NP issue among its Millennium Prize Problems:

Suppose that you are organizing housing accommodations for a group of four hun-
dred university students. Space is limited and only one hundred of the students will
receive places in the dormitory. To complicate matters, the Dean has provided you
with a list of pairs of incompatible students, and requested that no pair from this
list appear in your final choice.

We are interested in the general problem with N students and n dormitory places (in the ex-
ample, N = 400 and n = 100); let the question be “Will you be able to fill all n dormitory
places?”
1.1) Prove that the problem is in NP.
1.2) Knowing that 3SAT is complete, prove that the Clay Institute problem is NP-complete by
an appropriate reduction.
Hint — For point 1.2, observe that the Clay Institute example problem is just the rephrasing of
a well known NP-complete problem, and imitate the reduction seen in class.

Solution 1

1.1) Given N students and n dormitory places, the instance size is given by the representation
of the two numbers plus the size of the Dean’s list of incompatible student pairs. The latter
might be as large as the set of all pairs of students, therefore it is quadratic wrt N :

O(logN + log n+N2) = O(N2).

The list size clearly dominates the other items.
If a coworker has found a suitable arrangement, they can easily prove it to us by sending us the
list of students to be accommodated in the dormitory. This list may come in two forms: either
an array of n IDs identifying the students, each having size O(logN), therefore having total
size O(n logN), or a binary array with N entries, each entry telling us if the student is admitted
to the dormitory, total size O(N). In both cases, the list has polynomial size with respect to the
instance. To verify that the list is indeed a solution to the problem, we need to take the following
steps:

1. check that the list contains n students (a linear scan is sufficient for this);

2. check that no student is listed more than once (quadratic double scan, not needed if we
are given the binary array);

3. for every pair of entries, check that the pair does not appear in the Dean’s list (double
scan of the accommodations list, and for each pair perform a scan of the Dean’s list).

The third check is the most complex, but it is clearly polynomial. Therefore, the existence of a
solution can be proved with a polynomially-sized certificate that can be checked in polynomial
time, which means that the problem satisfies the condition to be in NP.
1.2) The problem is INDEPENDENT SET in disguise: the Dean’s list is the graph, provided
as an adjacency list, N is the total number of vertices, we are looking for an independent set
of size n (connected vertices are incompatible students, which cannot be both accommodated
in the dormitory). Therefore, the required reduction is the one from 3SAT to INDSET: given a
3CNF formula F with n clauses, create a “student” for every term in every clause (therefore,
we have N = 3n students); next, put in the Dean’s incompatibility list all pairs of students
corresponding to terms from the same clause, and add to the same list all pairs of students
corresponding to incompatible terms (i.e., pairs of terms that are in the form xi,¬xi). At this
point formula F will be satisfiable if and only if it is possible to select n mutually compatible
students, corresponding to true terms in F . See Theorem 20 and Fig. 3.1 in the notes.

Observations
Some student proposed other problems (e.g., k-vertex coloring). This might be OK, but they
need to clarify what the colors represents (what are they mapped to, in Theorem Clay Istitute
problem?).

Exercise 2
In the following property definitions, a finite alphabet Σ is given; M spans all DTMs on Σ;
x ∈ Σ∗ spans all strings; finally, M(x) represents the computation of M on input x:

P1 = {M : ∀x M(x) leaves the initial state q0 at the first step}
P2 = {M : ∀x M(x) never enters the initial state q0 after the first step}
P3 = {M : ∀x M(x) changes state at every step}.

2.1) Prove that none of the above properties is semantic.
2.2) For each of the properties above, prove whether it is computable or not.
2.3) Prove or disprove the following statement:

Every trivial property of Turing machines is semantic.

Solution 2

2.1) By definition, a machine that runs forever accepts the empty language. Let M1 be a
machine that keeps going left remaining in the same state:

q0start

any symbol/ ,→
0 1

q0 , q0,→ , q0,→ , q0,→

Let M2 be a machine that in the first step always transition to a new state, then keeps running
forever:

q0start q1
any symbol/ ,→

any symbol/ ,→
0 1

q0 , q1,→ , q1,→ , q1,→
q1 , q1,→ , q1,→ , q1,→

Clearly, L(M1) = ∅ = L(M2), however M1 ̸∈ P1, while M2 ∈ P1. Therefore, P1 is not
semantic.
The same machines also work for P2, since M1 keeps reentering the initial state, while M2

doesn’t.
Observe that neither M1 nor M2 change state at every step, therefore neither has property P3.
However, we can build a third machine, M3, that keeps changing state while running forever:

q0start q1

any symbol/ ,→

any symbol/ ,→

0 1
q0 , q1,→ , q1,→ , q1,→
q1 , q0,→ , q0,→ , q0,→

Again, L(M3) = ∅, however (unlike M1 and M2) M3 ∈ P3. Therefore, P3 is not semantic
either.

2.2) P1 is computable: to decide it, we just need to look at the transition function and check
that, no matter the input symbol, the rules for q0 always lead to a different state.
The same idea doesn’t work for P2, since we also need the machine to never go back to q0; even
if there is some rule that leads back to q0, we need to check if it’s ever used. Indeed, the property
is non-recursive, and we can reduce the Halting problem (in the version with the empty input,
HALTε) to it.
Suppose that we are given a TM M, and we want to know if M ever halts. We can tweak it
into a new machine M′ by adding a dummy initial state q′0 that does nothing but immediately
move to a new state q′1 that erases the tape (in this way, we ensure that M′ satisfies P2). Once
the tape is erased, M′ transitions to the initial state of M and starts computing M(ε) (because
the tape is now empty). However, we replace all transitions to the halting state with transitions
to q′0. Therefore, M′(x) immediately leaves its initial state, then follows the same steps as
M(ε); however, if M(ε) halts then M′(x) returns to state q′0, thereby violating property P2.
To summarize, M(ε) halts if and only if M′(x) returns to its original state, which is a different
way of saying that M(ε) halts if and only if M′ ̸∈ P2. We have therefore reduced HALTε to
P2, thereby proving that it is uncomputable.
A similar construction lets us prove that P3 is uncomputable. Again, we reduce HALTε to P3.
Let M be a TM; Let us transform it to a new machine M′ that initially erases it input and then
executes the original M on the empty tape. To make property P3 valid, we double the number
of states of M′ by inserting an “even” and an “odd” version of each state, and making “even”
states transition to “odd” ones and vice versa, so that M′ actually changes state at every step,
satisfying property P3. Finally, whenever M halts, let M′ remain in the same state, thereby
violating P3. Therefore, M(x)′ ∈ P3 if and only if M(ε) never halts, and we have reduced
HALTvarepsilon to P3.

Observations
• The fact that the statement of a property mentions states or other syntactic elements

doesn’t automatically mean that the property is not semantic. Just stick to the definition.

• P3 does not require the TM to visit a new state at each step. If so, the property would
be computable, because we just need to check if the machine halts before exhausting all
states (and this can be checked for all inputs, because only a finite portion of them can be
scanned).

• “To verify the property we need to simulate the machine” is always a deeply wrong an-
swer. Simulation is just one out of many possible ways to analyze an algorithm.

Exercise 3

3.1) State Cook-Levin’s Theorem.
3.2) Outline the Theorem’s proof.

Solution 3

3.1) See the lecture notes.
3.2) See the lecture notes. As an example of correct answer, consider the following outline.

• Let L ∈ NP, and let NL be a NDTM that decides x ∈ L in non-deterministic polynomial
time p(|x|).

• We can represent the non-deterministic computation NL(x) with a Boolean circuit in
p(|x|) stages, where every stage takes the previous configuration and produces the next
one. Every stage has polynomial size, because the size of each configuration is polyno-
mial in |x|. Every stage takes a bit as an input that represents the non-deterministic choice
made by NL at that step.

• Therefore, the whole computation is represented as a polynomially-sized Boolean circuit
with p(|x|) inputs, and it accepts x if and only if there is a sequence of non-deterministic
choices that leads to acceptance.

• The decision x ∈ L is therefore true if and only if the Boolean circuit has a satisfying
input assignment.

• A Boolean circuit can be reduced to a similarly-sized 3-CNF formula. Therefore, the
question “x ∈ L?” can be reduced to a 3-CNF formula that is satisfiable if and only if
there is an accepting computetion for x.

Many other answers were considered acceptable.

