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Exercise 1

1.1) Define the space complexity class L.
1.2) Consider the following language of strings in {a,b}∗:

L = {an1ban2ban3b · · ·bank : k ∈ N ∧ k ≥ 1 ∧ n1 > n2 > n3 > · · · > nk > 0}.

Namely, a string is in L iff it is composed of non-empty sequences of a’s of decreasing length
separated by single b’s, e.g.:

aaaaabaaaba ∈ L, aaba ∈ L,
aaabaaa ̸∈ L (two subsequences with the same number of a’s: n1 = n2 = 3),

aaabaaba ∈ L, aaaaaaaaaaaaaaba ∈ L,
aaabbaa ̸∈ L (two consecutive b’s),

aabaaa ̸∈ L (the sequences of b’s are not of decreasing length).

Prove that L ∈ L.
Hint — For 1.2: start by sketching down a (pseudocode) program that decides L.

Solution 1

1.1) See the lecture notes. Some clarity in defining what “space” is in the definition’s context is
appreciated.
1.2) An algorithm to check if a string s ∈ {a,b}∗ belongs to L just needs to scan the string,
remember the length of the latest full sequence of a’s it has found, counting the length of the
current one, and rejecting as soon as one of the definition’s constraints is violated:
1. on input s ∈ {a,b}∗
2. current size← 0 Size of the current sequence of a’s
3. last size← 0 Size of the previous sequence of a’s
4. for c in s scan all symbols in the string
5. if c = ’a’ We are in a sequence of a’s
6. current size← current size + 1 increase the counter
7. if last size > 0 if this is not the first such sequence. . .
8. and current size ≥ last size . . . and it’s longer than the last one. . .
9. reject . . . then s ̸∈ L
10. else Found b: a sequence of a’s has been completed
11. if current size = 0 if it was empty. . .
12. reject . . . then s ̸∈ L
13. Otherwise we can continue
14. last size← current size Remember the size of the last sequence of a’s
15. current size← 0 reset the counter for the next sequence of a’s
16. if current size = 0 if the last sequence of a’s was empty
17. reject . . . then s ̸∈ L
18. accept if no violation was found, then s ∈ L.



The above code uses two counters, current length (playing the role of ni for the ith sequence
of a’s being scanned) and last length, storing ni−1. Since the algorithm only uses two counters,
each needing to store a number no larger than the size of s, it is clear that the space required is
O(log |s|).

Observations

The code above is just an example; I haven’t checked its correctness and some edge cases
might still be missing. Errors such as accepting zero-length sequences of a’s, or forgetting the
equality in a comparison were not taken into account; purely verbal answers would be accepted,
provided that they were free of ambiguities.
Moreover, observe that a TM implementation would require more details, e.g., at least a three-
symbol alphabet to delimit the input string with blanks and to separate counters in the working
tape, but it should be apparent that such details would not compromise the main argument that
two logarithmic counters are sufficient.



Exercise 2
A teacher wants to divide a large class of N students into a small number k ≤ N of groups,
each to be assigned a different project. She sets a constraint on how groups are formed:
No-past-collaboration constraint: Every group must be composed of students who never col-
laborated before — i.e., if two students already collaborated in a previous group project, then
they must be placed in different groups.
The teacher wants to know if she has prepared enough projects to be able to satisfy the con-
straint. Luckily for her, the College’s Statistical Service maintains a comprehensive list of
student groups formed in the past. Thus, she can formally define the following decision prob-
lem.
Given (1) the number N of students, (2) the list of past student collaborations (e.g., in the form
of a list pairs of students) and (3) the number k of available projects, is it possible to split the
N students into k groups so that the no-past-collaboration constraint is satisfied?
2.1) What complexity class does the above defined decision problem belong to, and why?
2.2) In particular, for what values of k does an efficient decision procedure exist? Among them,
for what values of k is the decision trivial?
Note that group sizes need not be balanced, nor are we required to actually create the groups:
we only need to decide if the number k of projects is enough, or if the teacher needs to devise
more of them.

Solution 2

2.1) Our problem is clearly in NP, since a solution (a partition of the students into k groups)
can be verified in polynomial time.
We can also prove its NP-completeness: once the set of students and past collaborations has
been encoded into a graph, the problem becomes that of assigning to each node a label from the
set {1, 2, . . . , k} so that no connected nodes have the same label. Therefore, for a fixed value of
k, the problem is equivalent to k-VERTEX COLORING. In other words, we can (polynomially)
reduce any instance of k-VERTEX COLORING to our problem. Since k-VERTEX COLOR-
ING is NP-complete for k ≥ 3, then our problem, for which k is an arbitrary input value, is
NP-complete.
2.2) However, for specific combinations of N and k the problem may have a polynomial (or
even trivial) solution:

• k = 0: only possible if N = 0 (trivial);

• k = 1: only possible if the graph is completely disconnected (polynomial);

• k = 2: equivalent to 2-VERTEX COLORING (polynomial);

• k = N−1: always possible unless the past collaboration graph is complete (polynomial):

• k ≥ N : always possible (trivial).

By “trivial” I mean that we don’t need to look at the adjacency structure at all. “Trivial” cases
still require a check on the values of k and N , and should therefore be regarded as linear (i.e.,
still polynomial) or at best logarithmic (since the representations of k and N are logarithic wrt
the input size dominated by the adjacency list/matrix).



Observations

After looking at student answers, I realized that the problem description could mislead into
trying to prove some equivalence to the INDEPENDENT SET problem. Indeed, every single
group is an independent set within the graph; however, here we are not requiring an independent
set of size k, but a partition of the graph into k independent sets, which is precisely k-VERTEX
COLORING.
Students who fell in this (unintentional) trapdoor have not been penalized for that, and the
answer was scored on the soundness of their analysis, even if a final correct answer could not be
obtained. For instance, an iterated greedy search for the largest independent set is an interesting
proposal.



Exercise 3

3.1) State Rice’s Theorem about the (un-) decidability of Turing Machine properties as precisely
as possible.
3.2) Outline a proof of the Theorem.

Solution 3

3.1) See the lecture notes. A correct definition of “non-trivial” and “semantic” was clearly
necessary before stating the theorem. however, statements that omitted those definitions were
accepted if a correct outline of the proof in 3.2 was detailed enough to prove the knowledge of
those definitions.
3.2) See the lecture notes.


