
Computability and Computational Complexity, A.Y. 2023–2024

Guide to the answers
Monday, February 19, 2024

Exercise 1
Let Σ be a finite alphabet, and LR1, LR2, LRE1, LRE2 ⊆ Σ∗ be four languages on Σ. LR1 and LR2

are recursive, while LRE1 and LRE2 are recursively enumerable, but not recursive.
1.1) For each of the following languages, state if they are recursive, recursively enumerable, or
none, and motivate your answers:

• L1 = LR1 ∪ LR2;

• L2 = LR1 ∩ LR2;

• L3 = LR1 ∪ LRE1;

• L4 = LR1 ∩ LRE1;

• L5 = LRE1 ∪ LRE2;

• L6 = LRE1 ∩ LRE2.

1.2) State whether the following properties of Turing machines are computable or not, and
motivate your statements:

• P1 = {M : M decides LR1};

• P2 = {M : M decides LRE1};

• P3 = {M : if |x| < 100, thenM decides x ∈ LR1 in no more than |x|2 + 1 steps};

• P4 = {M : if |x| < 100, thenM decides x ∈ LRE1 in no more than |x|2 + 1 steps}.

Solution 1
By definition, we can assume that there are TMsMR1 andMR2 that respectively decide lan-
guage LR1 and LR2; likewise, let TMs MRE1 and MRE2 recognize languages LRE1 and LRE2

respectively.
1.1)

• we can define TMM1 that decides x ∈ L1 by checking if x ∈ LR1 or x ∈ LR2:

M1(x) : ifMR1(x) accepts then accept, else runMR2(x),

therefore L1 is recursive.

• Similarly, we can define TM M2 that decides x ∈ L2 by checking if x ∈ LR1 and
x ∈ LR2:

M2(x) : ifMR1(x) rejects then reject, else runMR2(x),

thus L2 is recursive too.

• For L3, if x ̸∈ LR1, then we must check if x ∈ LRE1, but in generalMRE1(x) only halts if
the answer is positive: therefore we can only create a machine that recognizes L3, which
is therefore recursively enumerable, but in general not recursive:

M3(x) : ifMR1(x) accepts then accept, else runMRE1(x).

Observe, however, that there might be special cases: for instance, if LRE1 ⊂ LR1, then
L3 = LR1, hence it would be recursive.

• A similar reasoning can be carried out for L4: if x ∈ LR1, then we must also check if
x ∈ LRE1, but this only halts if the answer is positive: therefore, we can only create a
machine that recognizes L4, which is therefore recursively enumerable, but in general not
recursive:

M4(x) : ifMR1(x) rejects then reject, else runMRE1(x).

Consider, however, the two following special cases (among many possible others):

– if LR1 ⊂ LRE1, then L4 = LR1, hence it would be recursive;

– if LR1 and LRE1 were disjoint, then L4 = ∅, and it would be trivially recursive.

• If both languages are RE, then their union L5 is RE as well, because we can combine the
two machines as follows:

M5(x) : alternate the execution ofMRE1(x) andMRE2(x); as soon as one accepts, then acept.

We need to execute them “in parallel” because either of them might run forever, but we
need only one to halt to accept the union language. Again, L5 might as well be recursive.

• Finally, the intersection language L6 can be treated as in the previous intersection cases,
since we need both computations MRE1(x) and MRE2(x) to accept and halt; therefore,
L6 is RE.

1.2)

• P1 is semantic and non trivial, therefore undecidable.

• P2 is trivial: since we explicitly stated that LRE1 is not recursive, then no machine can
decide it, therefore the property is empty (always false). Hence, P2 is trivially recursive.

• To assess P3, we “just” need to iterate through all possible strings x of lenght at most
100‘symbols, and simulate the computationMR1 for at most |x|2+1 steps. As soon as one
of the simulations doesn’t halt within the allotted number of steps, we reject the property.
Otherwise, once all strings are tested, we accept. This procedure always terminates with
acceptance or rejection, therefore P3 is recursive.

• The same procedure works for P4, since recursivity of the language does not play any
role in the algorithm.

Observations

• Even though L3 is a subset of LR1, this fact alone doesn’t allow us to conclude that it
is recursive, because a subset of a recursive language is not necessarily recursive: think
of the language Σ∗ of all strings, which is trivially computable and contains every other
language, e.g., HALT, which is uncomputable.

• The original text of the exam contained an error in the definitions of P3 and P4 (“less
than |x|2 steps” in place of “no more than |x|2 + 1 steps”), which made it trivially false
for x = ε. Answers were evaluated independent of this detail, however extra points and
kudos to those who noticed it.

Exercise 2
Let L ∈ P be a deterministic polynomial-time language on finite alphabet Σ, and let L′ and L′′

be defined as follows:

• L′ = Σ∗ × L× Σ∗ = {w1w2w3 : w1, w3 ∈ Σ∗ ∧ w2 ∈ L}, the language of all strings on
alphabet Σ that contain a word from L as a substring (contiguous sequence of symbols);

• L′′ = {σ1σ2σ3 . . . σn ∈ Σ∗ : ∃k, i1, i2, . . . ik (0 ≤ k ≤ n ∧ 1 ≤ i1 < i2 < · · · <
ik ≤ n ∧ σi1σi2 . . . σik ∈ L)}, the language of all strings containing a (non necessarily
contiguous) subsequence of symbols that compose a word in L.

For instance, if “cat” ∈ L, then “location” and “catalog” belong to both L′ and L′′, while the
words “decoration” and “croissant” only belong to L′′.
2.1) Discuss the deterministic time complexity of L′ and L′′.
2.2) What about their non-deterministic time complexity?

Solution 2
LetML be a deterministic, polynomial-time TM that decides L.
2.1) Given a string x, to decide x ∈ L′ we need to iterate through all of its substrings x′ and
check if x′ ∈ L:

ML′(x) : for all x′ substring of x, ifML(x
′) accepts then accept and halt.

Finally, reject and halt.

Since the number of substrings of x is polynomial (quadratic) in |x|, then the whole procedure
is still polynomial, and L′ ∈ P.
On the other hand, a machineML′′ that decides L′′ must iterate over all non-contiguous sub-
sequences of characters of x, and there are 2|x| of them, therefore in the worst case we need to
callML(x

′) for an exponential number of sub-sequences of x. Therefore, all we can say is that
L′′ ∈ EXP.
2.2) Since L′ ∈ P, then obviously L′ ∈ NP too. About L′′: if x ∈ L′′, then we know that there
must be a subsequence x′ of x such that x′ ∈ L. That subsequence is a polynomially verifiable
certificate; verifying that x′ is a certificate for x ∈ L′′ requires two ckecks:

1. check that x′ is actually a (not necessarily contiguous) subsequence of x by checking
that all symbols of x′ appear in x in the same order (done with a simple scan of the two
strings);

2. runML(x
′) to verify that x′ ∈ L.

Equivalently, we can simply define a non-deterministic machime NL′′ that decides L′′ as fol-
lows:

NL′′(x) : Non-deterministically select a subsequence x′ of x;
RunML(x

′).

The non-deterministic subsequence selection can be refined as “set x′ ← ε, then for every
symbol of x non-deterministically decide whether to append it to x′ or not”.
The two lines of NL′′ are both polynomial-time, therefore, L′′ ∈ NP.

Observations

• Observe that we are not assuming that L is a finite list of words: all we know is that
there is a polytime DTM that decides it. Therefore, an iteration over all strings in L is not
possible.

Exercise 3
State and prove Rice’s theorem about the undecidability of semantic, non-trivial properties of
Turing machines.

Solution 3
See the lecture notes or any textbook on computability.

Observations

• Remember that to prove it (by contradiction) we need to reduce HALT to the property,
not the other way round. I.e., start with assuming that property P is computable and show
that we can decide the halting problem.

