Computability and Computational Complexity, A.Y. 2023-2024
 Written test

Monday, February 19, 2024

Exercise 1

Let Σ be a finite alphabet, and $L_{\mathrm{R} 1}, L_{\mathrm{R} 2}, L_{\mathrm{RE} 1}, L_{\mathrm{RE} 2} \subseteq \Sigma^{*}$ be four languages on Σ. $L_{\mathrm{R} 1}$ and $L_{\mathrm{R} 2}$ are recursive, while $L_{\mathrm{RE} 1}$ and $L_{\mathrm{RE} 2}$ are recursively enumerable, but not recursive.
1.1) For each of the following languages, state if they are recursive, recursively enumerable, or none, and motivate your answers:

- $L_{1}=L_{\mathrm{R} 1} \cup L_{\mathrm{R} 2}$;
- $L_{3}=L_{\mathrm{R} 1} \cup L_{\mathrm{RE} 1}$;
- $L_{5}=L_{\mathrm{RE} 1} \cup L_{\mathrm{RE} 2} ;$
- $L_{2}=L_{\mathrm{R} 1} \cap L_{\mathrm{R} 2}$;
- $L_{4}=L_{\mathrm{R} 1} \cap L_{\mathrm{RE} 1}$;
- $L_{6}=L_{\mathrm{RE} 1} \cap L_{\mathrm{RE} 2}$.
1.2) State whether the following properties of Turing machines are computable or not, and motivate your statements:
- $\mathcal{P}_{1}=\left\{\mathcal{M}: \mathcal{M}\right.$ decides $\left.L_{\mathrm{R} 1}\right\} ;$
- $\mathcal{P}_{2}=\left\{\mathcal{M}: \mathcal{M}\right.$ decides $\left.L_{\mathrm{RE} 1}\right\}$;
- $\mathcal{P}_{3}=\left\{\mathcal{M}:\right.$ if $|x|<100$, then \mathcal{M} decides $x \in L_{\mathrm{R} 1}$ in no more than $|x|^{2}+1$ steps $\}$;
- $\mathcal{P}_{4}=\left\{\mathcal{M}\right.$: if $|x|<100$, then \mathcal{M} decides $x \in L_{\text {RE1 }}$ in no more than $|x|^{2}+1$ steps $\}$.

Exercise 2

Let $L \in \mathbf{P}$ be a deterministic polynomial-time language on finite alphabet Σ, and let L^{\prime} and $L^{\prime \prime}$ be defined as follows:

- $L^{\prime}=\Sigma^{*} \times L \times \Sigma^{*}=\left\{w_{1} w_{2} w_{3}: w_{1}, w_{3} \in \Sigma^{*} \wedge w_{2} \in L\right\}$, the language of all strings on alphabet Σ that contain a word from L as a substring (contiguous sequence of symbols);
- $L^{\prime \prime}=\left\{\sigma_{1} \sigma_{2} \sigma_{3} \ldots \sigma_{n} \in \Sigma^{*}: \exists k, i_{1}, i_{2}, \ldots i_{k}\left(0 \leq k \leq n \wedge 1 \leq i_{1}<i_{2}<\cdots<\right.\right.$ $\left.\left.i_{k} \leq n \wedge \sigma_{i_{1}} \sigma_{i_{2}} \ldots \sigma_{i_{k}} \in L\right)\right\}$, the language of all strings containing a (non necessarily contiguous) subsequence of symbols that compose a word in L.

For instance, if "cat" $\in L$, then "location" and "catalog" belong to both L^{\prime} and L^{\prime} ", while the words "decoration" and "croissant" only belong to L ".
2.1) Discuss the deterministic time complexity of L^{\prime} and $L^{\prime \prime}$.
2.2) What about their non-deterministic time complexity?

Exercise 3

State and prove Rice's theorem about the undecidability of semantic, non-trivial properties of Turing machines.

