
Computability and Computational Complexity, A.Y. 2023–2024

Guide to the answers
Monday, January 8, 2024

Exercise 1
Let L be a finite, non-empty language on the alphabet Σ = {0, 1}.
For each of the following propositions say whether it is true or false, and briefly motivate your
answer.

1. L is computable.

2. The property “M decides L,” where M is a deterministic Turing machine, is recursive.

3. The property “the string representing, in binary notation, the number of steps of M(ε)
before halting belongs to L,” where M is a deterministic Turing machine, is recursive.

4. The property “the string representing, in binary notation, the number of states of M
belongs to L,” where M is a deterministic Turing machine, is recursive.

Solution 1

1. True — Since L is finite, it is clearly decidable: a machine just needs to compare the
input against a finite number of strings, accepting as soon as a comparison succeeds, or
rejecting after all comparisons have failed (a sequence of if statements).
Better yet, the machine may scan the input left to right, encoding the string in its own
state, rejecting as soon as it becomes clear that the encoded string is not in L, accepting
at the end.
For instance, let L = {ε, 1, 01, 11, 100}. Then the following pseudocode clearly decides
whether x ∈ L:

on input x:
if x = ε then accept;
if x = “1” then accept;
if x = “01” then accept;
if x = “11” then accept;
if x = “100” then accept;
reject;

As an alternative, the following TM decides L by scanning the input and encoding it in
the state name as a mnemonic help; as long as the state name is a prefix of some string
in L then the machine proceeds; when it finds the first blank, if the state name encodes a
string in L then it accepts; in all other cases it rejects:



0

1

b

1

0,b

b

0,1

b

0

1

0

1,b

0,1

b

b 0,1

state

Initial
ε

0

1

01

10

11

100

Accept

Reject

Notice that the arrows are only marked by the input symbol: the machine always moves
right and keeps the same symbols on the tape (it is basically a deterministic finite-state
automaton).

2. False — “M decides L” is clearly semantic and not trivial, therefore Rice’s Theorem
applies: the property is undecidable.

3. True — The property refers to the behavior of a machine M on the empty tape, therefore
it does not refer to the language recognised by it: it is not a semantic property, thus Rice’s
Theorem does not apply. Let m be the largest number encoded in binary form by strings
in L. We just need to simulate machine M for at most m steps. If it halts in n steps
(with n < lem), we just check whether the binary encoding of n is in L (which we can
do, because L is computable), otherwise M clearly doesn’t halt within a number of steps
encoded in L (maybe it doesn’t halt at all). Therefore the property is recursive.
For instance, if L = {ε, 1, 01, 11, 100} then a machine has the property iff it halts after 1,
3, or 4 steps on the empty tape. Otherwise it doesn’t. We just need to simulate M for at
most 4 steps.

4. True — Just count the number of states, encode it into x and decide whether x ∈ L.
If L = {ε, 1, 01, 11, 100}, then a machine has the property iff it has 1, 3, or 4 states.

Observations

• The sample pseudocode and TM above are just shown for clarification, but there was no
need to provide an algorithm for point 1.
Just the observation that comparing a string against a finite number of alternatives is
obviously feasible would achieve full marks.

• Answering “false” to both points 1 and 2 is a significant logical fallacy: if L were uncom-
putable, then property “M decides L” would be trivial, because no machine has it, and
therefore it would be trivially decidable by the machine that always rejects.

• For point 3, we don’t need to know if M(ε) halts: we just need to simulate it for a
maximum number of steps (4 in the example). Therefore, HALTε is not Turing-reducible
to the property.



Exercise 2
Let L be a finite, non-empty language on the alphabet Σ = {0, 1}.
For each of the following propositions say if it is true, false or (to the best of our knowledge)
unknown, and briefly motivate your answer.

1. L ∈ P.

2. L ∈ L.

3. L is polynomial-time reducible to 3SAT.

4. 3SAT is polynomial-time reducible to L.

Solution 2

1. True — Verifying whether the input x belongs to a finite series of alternatives is clearly
polynomial with respect to the number of involved strings and to their length. For in-
stance, the pseudocode of the example requires one comparison for every string in L in
the worst case; the TM of the example runs for as many steps as the longest string in L
(plus one). Therefore, L ∈ DTIME(1) ⊂ P.

2. True — Comparing a string with a hardcoded one can be done by just scanning the input
tape, without ever writing anything (or, if we want to write an acceptance bit, writing in
constant space). Therefore, L ∈ DSPACE(1) ⊂ L.
Both the pseudocode and the TM of the example above are constant time.

3. True — 3SAT is NP-complete, therefore any language in NP, including L, can be reduced
to it in polynomial time.
The reduction is very simple: given input x, if x ∈ L then produce a satisfiable 3-CNF
formula, e.g. (x1∨x2∨x3), otherwise produce an unsatisfiable one, e.g. (x1∨x1∨x1)∧
(¬x1 ∨ ¬x1 ∨ ¬x1).

4. Unknown (probably false) — If 3SAT is polynomial-time reducible to L, it means that
L itself is NP-complete. Since we know that L ∈ P, this is true if and only if P = NP.
Hence the requested reduction is, to the best of our knowledge, unlikely.

Observations

• To answer the questions we just needed to know that L is finite.

• While L is both constant time and constant space, there was no need to observe that to
get full marks on the point.

• One could start by answering point 2 and then just observe L ⊆ P.

• For point 3, no need to provide a reduction: just stating why it exists is enough.



Exercise 3
Define the probabilistic time complexity class RP and prove the following inclusions:

P ⊆ RP, RP ⊆ NP, RP ⊆ BPP.

Solution 3
See the lecture notes and the exercises. In short:

1. L ∈ RP if there is 0 < ε < 1 and a NDTM N that decides L in polynomial time, with the
further restriction that if x ∈ L the ratio of accepting computations in N (x) is bounded
from below by ε.

2. P is the special case in the above definition where N is deterministic, therefore if x ∈ L
the ratio of accepting computations is 1 (which is greater than ε by definition).

3. The above definition of RP is precisely NP with further restrictions.

4. BPP puts different restrictions on acceptance ratio (0 < ε < 1
2
):

• if x ∈ L, the ratio of accepting computations is bounded from below by 1
2
+ ε,

which is apparently stronger than the bound required by RP; however, we just need
to iterate the computation of N (x) for a constant number of times to boost the ratio
of accepting computations above any value (less than 1);

• if x ̸∈ L, the ratio of accepting computations is bounded from above by 1
2
− ε; this

is satisfied by any language in RP, since in that case the ratio is zero.


