Monday, January 8, 2024

Exercise 1

Let *L* be a **finite, non-empty** language on the alphabet $\Sigma = \{0, 1\}$.

For each of the following propositions say whether it is true or false, and briefly motivate your answer.

- 1. *L* is computable.
- 2. The property " \mathcal{M} decides L," where \mathcal{M} is a deterministic Turing machine, is recursive.
- 3. The property "the string representing, in binary notation, the number of steps of $\mathcal{M}(\varepsilon)$ before halting belongs to *L*," where \mathcal{M} is a deterministic Turing machine, is recursive.
- 4. The property "the string representing, in binary notation, the number of states of \mathcal{M} belongs to L," where \mathcal{M} is a deterministic Turing machine, is recursive.

Exercise 2

Let L be a finite, non-empty language on the alphabet $\Sigma = \{0, 1\}$.

For each of the following propositions say if it is true, false or (to the best of our knowledge) unknown, and briefly motivate your answer.

- 1. $L \in \mathbf{P}$.
- 2. $L \in \mathbf{L}$.
- 3. L is polynomial-time reducible to 3SAT.
- 4. 3SAT is polynomial-time reducible to *L*.

Exercise 3

Define the probabilistic time complexity class **RP** and prove the following inclusions:

 $P\subseteq RP, \qquad RP\subseteq NP, \qquad RP\subseteq BPP.$