Computability and Computational Complexity, A.Y. 2023-2024
 Written test

Monday, January 8, 2024

Exercise 1

Let L be a finite, non-empty language on the alphabet $\Sigma=\{0,1\}$.
For each of the following propositions say whether it is true or false, and briefly motivate your answer.

1. L is computable.
2. The property " \mathcal{M} decides L," where \mathcal{M} is a deterministic Turing machine, is recursive.
3. The property "the string representing, in binary notation, the number of steps of $\mathcal{M}(\varepsilon)$ before halting belongs to L," where \mathcal{M} is a deterministic Turing machine, is recursive.
4. The property "the string representing, in binary notation, the number of states of \mathcal{M} belongs to L," where \mathcal{M} is a deterministic Turing machine, is recursive.

Exercise 2

Let L be a finite, non-empty language on the alphabet $\Sigma=\{0,1\}$.
For each of the following propositions say if it is true, false or (to the best of our knowledge) unknown, and briefly motivate your answer.

1. $L \in \mathbf{P}$.
2. $L \in \mathbf{L}$.
3. L is polynomial-time reducible to 3 SAT.
4. 3SAT is polynomial-time reducible to L.

Exercise 3

Define the probabilistic time complexity class RP and prove the following inclusions:

$$
\mathbf{P} \subseteq \mathbf{R} \mathbf{P}, \quad \mathbf{R} \mathbf{P} \subseteq \mathbf{N} \mathbf{P}, \quad \mathbf{R} \mathbf{P} \subseteq \mathbf{B} \mathbf{P} \mathbf{P}
$$

