Computability and Computational Complexity, A.Y. 2019-2020
 Written test

Wednesday, September 2, 2020
Consider the following language on the two-symbol alphabet $\{0,1\}$:

$$
L=\left\{0^{n} 1^{m} \mid n, m \in \mathbb{N} \wedge n>m\right\} .
$$

In plain terms, a string is in L if and only if it starts with a sequence of 0 's followed by a (possibly empty) sequence of 1's and nothing else, with strictly more 0 's than 1's.
Some examples:

$$
\begin{array}{ccc}
00011 \in L & 00111 \notin L & 0 \in L \\
1 \notin L & 10 \notin L & 11000 \notin L \\
0110100 \notin L & 0000 \in L & 0011 \notin L \\
& \varepsilon \notin L . &
\end{array}
$$

Exercise 1

1.1) Write down a one-tape deterministic Turing Machine \mathcal{M} on the three-symbol alphabet $\left\{0,1, _\right\}$that, given an input string $s \in\{0,1\}^{*}$, decides $s \in L$.
You may assume that the input string s is surrounded by infinite blank cells \lrcorner in both directions, and that the initial current position is the leftmost symbol of s.
1.2) What is the time complexity of your machine \mathcal{M} ?

More precisely: if n is the input size, what is the smallest exponent k such that $\mathcal{M} \in$ DTIME $\left(n^{k}\right)$? Explain briefly.

Exercise 2

Prove that the language L belongs to the complexity class \mathbf{L}.

Exercise 3

Is it always possible for an instructor to correctly evaluate a student's answer to 1.1? Explain.

