Wednesday, September 2, 2020

Consider the following language on the two-symbol alphabet $\{0, 1\}$:

 $L = \{ 0^n 1^m \mid n, m \in \mathbb{N} \land n > m \}.$

In plain terms, a string is in L if and only if it starts with a sequence of 0's followed by a (possibly empty) sequence of 1's and nothing else, with strictly more 0's than 1's. Some examples:

Exercise 1

1.1) Write down a one-tape deterministic Turing Machine \mathcal{M} on the three-symbol alphabet $\{0, 1, ...\}$ that, given an input string $s \in \{0, 1\}^*$, decides $s \in L$.

You may assume that the input string s is surrounded by infinite blank cells _ in both directions, and that the initial current position is the leftmost symbol of s.

1.2) What is the time complexity of your machine \mathcal{M} ?

More precisely: if n is the input size, what is the smallest exponent k such that $\mathcal{M} \in \text{DTIME}(n^k)$? Explain briefly.

Exercise 2

Prove that the language L belongs to the complexity class L.

Exercise 3

Is it always possible for an instructor to correctly evaluate a student's answer to 1.1? Explain.