Computability and Computational Complexity, A.Y. 2019-2020

Solution outlines to the written exam

Mauro Brunato

Wednesday, January 15, 2020

Exercise 1

Consider the following language in $\{0,1\}^{*}$:

$$
K=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}=\{\varepsilon, 01,0011,000111,00001111,0000011111, \ldots\}
$$

i.e., all strings composed by a sequence of zeroes followed by the same number of ones.
1.1) Write a single-tape Turing Machine with alphabet $\Sigma=\{\nu, 0,1\}$ that recognizes K.
1.2) Prove or disprove the decidability of each of the following properties of TMs:
$\mathcal{P}_{1}=\{\mathcal{M}: \mathcal{M}$ decides $K\}$
$\mathcal{P}_{2}=\{\mathcal{M}: \mathcal{M}$ decides K in less than 100 steps $\}$,
$\mathcal{P}_{3}=\left\{\mathcal{M}: \mathcal{M}\right.$ decides $K \cap \Sigma^{100}$ (i.e., strings in K not longer that 100 symbols) $\}$.

For 1.1 use any notation you like, and encode acceptance and rejection as you prefer (0/1 on tape, two different halting states, etc.).

Solution 1

1.1) The simplest, although, not the most efficient, machine just keeps erasing the leftmost 0 and the rightmost 1 until the input is empty or some unexpected symbol appears (e.g., leftmost 1 , righmost 0 , blank when a 1 should be erased).
We assume that the input is a contiguous string of 0's and 1's, surrounded by blanks, and that the machine starts on the leftmost input symbol. Here is the transition table:

	\checkmark	0	1
erase-leftmost-0	$J \rightarrow$ /accept	$J \rightarrow / \mathrm{go-right}$	1/ד/reject
go-right	$J \leftarrow / \mathrm{l}$ rase-rightmost-1	0/ד/go-right	1/ד/go-right
erase-rightmost-1	Jヶ/reject	$0 / \leftarrow / r e j e c t$	$J \leftarrow / \mathrm{go-left}$
go-left	$J \rightarrow$ /erase-leftmost-0	$0 / \leftarrow / \mathrm{go-left}$	1/ヶ/go-left

An encoding suitable for the TM simulator seen in class ${ }^{1}$ is:

```
erase-leftmost-0 0 _ r go-right ; found and erased a 0
erase-leftmost-0 1 1 r halt-reject ; unexpected 1
erase-leftmost-0 _ _ r halt-accept ; the input has been consumed
go-right 0 0 r go-right ; keep skipping the input
go-right 1 1 r go-right
```

[^0]```
go-right _ _ l erase-rightmost-1 ; found the end of the input
erase-rightmost-1 1 _ l go-left ; found and erased a 1
erase-rightmost-1 0 0 l halt-reject ; unexpected 0
erase-rightmost-1 _ _ l halt-reject ; unexpected blank
go-left 0 0 l go-left ; keep skipping the input
go-left 1 1 l go-left
go-left _ _ r erase-leftmost-0 ; found the beginning of the input
```

The same machine as an automaton form:


## 1.2)

- Property $\mathcal{P}_{1}$ is clearly semantic $\left(\mathcal{M} \in \mathcal{P}_{1} \Leftrightarrow L(\mathcal{M})=K\right)$ and is not trivial (there is at least one machine that decides $K$ and at least one that doesn't); therefore, by Rice's Theorem, it is undecidable.
- A TM limited to 100 steps cannot decide $K$. Consider, e.g., the string $s_{1}=0^{1000} 1^{1000} \in$ $K$. A TM limited to 100 steps wouldn't be able to read the whole input, therefore it wouldn't be able to tell $s_{1}$ from $s_{2}=0^{1000} 1^{1001} \notin K$. Therefore, $\mathcal{P}_{2}=\emptyset$, hence it is trivially computable by a TM that always rejects.
- Again, $\mathcal{P}_{3}$ is semantic and non-trivial, thus uncomputable.


## Observations

- Many other TMs are possible for 1.1.
- Observe that, since 1.1 requires the TM to just recognize $K$, rejection could be replaced by a non-halting computation.
- As usual, there is a significant distinction between the computability of $K$ and the computability of the property "This machine decides $K$ ".
- Property $\mathcal{P}_{2}$ doesn't just require the TM to halt after 100 steps, but also to decide $K$. Therefore, simulating the TM for 100 steps isn't enough: we also need to consider which inputs it should be simulated on.
- The fact that the language defining $\mathcal{P}_{3}$ is finite doesn't matter: Rice's theorem is still valid, because we wouldn't be able to always assert whether a TM would halt or not.


## Exercise 2

Prove that $K$, the language defined in Exercise 1, belongs to the complexity class $\mathbf{L}$.
While 1.1 required a single-tape machine, class $L$ has a different assumption. Here, however, you are not asked to write down the TM: just a few lines of pseudocode will do.

## Solution 2

Since $\mathbf{L}=$ DSPACE $(\log n)$, we need to describe an algorithm whose additional space is logarithmic wrt the input's size.
For instance, consider a 2-tape TM implementation of the following algorithm:

## function $K(\boldsymbol{x})$

```
\(c \leftarrow 0\)
 while next input symbol in \(\boldsymbol{x}\) is 0
 \(c \leftarrow c+1\)
 while next input symbol in \(\boldsymbol{x}\) is 1
 if \(c=0\)
 reject and halt
 \(c \leftarrow n-1\)
 if next input symbol in \(\boldsymbol{x}\) is and \(c=0\)
 accept and halt
 else
 reject and halt
```

The machine allocates a counter $c$ in its working tape, initialized with 0 , and scans the input: as long as it finds zeroes, it increases $c$; then as long as it finds ones, it decreases it. It fails when finding a zero following a one, or when $c$ falls below zero (underflow), or if $c$ is nonzero at the end of the input.
The function is clearly implementable on a two-tape TM, and just the counter $c$ needs to be stored in the working tape. Observe that in the worst case $c$ is increased once per input symbol, therefore its value is never larger that $|\boldsymbol{x}|$, so it requires at most $\left\lceil\log _{2}|\boldsymbol{x}|\right\rceil=O(\log |\boldsymbol{x}|)$ binary digits.

## Observations

- Remember: we talk about logspace, not time.
- Using more than one counter and an index to scan the input is fine, as long as we use a constant number of $O(\log |\boldsymbol{x}|)$-bit variables.


## Exercise 3

Let $L_{1}, L_{2} \in \mathbf{N P}$. Does $L_{1} \cup L_{2} \in \mathbf{N P}$ ? Does $L_{1} \cap L_{2} \in \mathbf{N P}$ ? Why?
Be as formal as you can, e.g.: "Since $L_{1} \in N P$, then there is a $T M \mathcal{M}_{1}$ such that... "

## Solution 3

Since $L_{1} \in \mathbf{N P}$, then there is a NDTM $\mathcal{N}_{1}$ that decides $L_{1}$ in polynomial time. Same for $L_{2}$. Given input $x$, to decide whether $x \in L_{1} \cup L_{2}$ we just need a NDTM that accepts $x$ whenever $\mathcal{N}_{1}$ or $\mathcal{N}_{2}$ accepts it:

- Store $x$ for future use.
- Run $\mathcal{N}_{1}$ on input $x$. If $\mathcal{N}_{1}$ accepts, then accept and halt.
- Restore input $x$.
- Run $\mathcal{N}_{2}$ on input $x$.

This machine runs in time that is, in the worst case, the sum of the times of $\mathcal{N}_{1}(x)$ and $\mathcal{N}_{2}(x)$ plus the time to copy and restore $x$, therefore it is polynomial in $|x|$.
Likewise, to decide whether $x \in L_{1} \cap L_{2}$ we need a NDTM that accepts $x$ whenever $\mathcal{N}_{1}$ and $\mathcal{N}_{2}$ accepts it:

- Store $x$ for future use.
- $\operatorname{Run} \mathcal{N}_{1}$ on input $x$. If $\mathcal{N}_{1}$ rejects, then reject and halt.
- Restore input $x$.
- $\operatorname{Run} \mathcal{N}_{2}$ on input $x$.

The worst-case runtime is the same of the previous machine.

## Observations

- The fact that $L_{1} \cap L_{2}$ is (in some sense) "smaller" than both $L_{1}$ and $L_{2}$ doesn't mean that it is "easier", nor that $L_{1} \cup L_{2}$ is "harder".
- Also remember that the exercise doesn't cite completeness.


## Exercise 4

Consider the following classical NP-complete languages:
CLIQUE $=\{(G, k):$ Undirected graph $G$ has a completely connected subgraph of size $k\}$, INDSET $=\{(G, k):$ Undirected graph $G$ has a completely disconnected subgraph of size $k\}$.
4.1) Describe a polynomial-time reduction from one language to the other.
4.2) Show that CLIQUE $\cap \operatorname{INDSET} \neq \emptyset$.

For 4.1, choose the direction you like. In 4.2, don't be afraid of simple answers: to show that a set is not empty, you just need to find an element in it.

## Solution 4

4.1) See the notes: $G=(V, E)$ has a clique of size $k$ if and only if $\bar{G}=(V, \bar{E})$ (same vertex set, complementary edge set) has an independent set of the same size.
4.2) We need to show that there is a graph $G$ and an integer $k$ such that $G$ has both a clique of size $k$ and an independent set of size $k$. Just take any nonempty graph $G$ and $k=1$ :

$$
(G, 1) \in \mathrm{CLIQUE} \cap \text { INDSET }
$$

## Observations

- Any example is OK, provided that the same graph contains both a $k$-clique and a $k$-indset for the same value of $k$.
- CLIQUE and INDSET are languages, in this case sets of instances in the form $(G, k)$ : to show that their intersection is not null, we must show that the same instance belongs both to CLIQUE and INDSET.


[^0]:    ${ }^{1}$ http://morphett.info/turing/turing.html

