Computability and Computational Complexity, A.Y. 2019–2020 Written exam

Mauro Brunato

Wednesday, January 15, 2020

Exercise 1

Consider the UNIVERSITY HIRING decision problem:

A university needs to hire the teaching staff for a new degree, for which a set T of topics must be taught. The executive board received n applications from prospective teachers, and every applicant $i \in \{1, ..., n\}$ has knowledge of a subset $S_i \subseteq T$ of the required topics. The budget allows for hiring at most $k \leq n$ teachers. Is there a choice of k applicants so that all teaching topics are covered?

An instance of the problem consists of parameters $n, k, T, S_1, \ldots, S_n$.

1.1) Prove that UNIVERSITY HIRING \in **NP**.

1.2) Prove by reduction that UNIVERSITY HIRING is complete in the class **NP**. The reduction can refer to any language discussed during the course.

1.3) Prove that if k is kept constant (e.g., k = 10), then the problem's asymptotic complexity is polynomial wrt input size.

Exercise 2

2.1) When is a language recursive? When is it recursively enumerable?

2.2) Prove that the following property \mathcal{P} of Turing machines \mathcal{M} is not recursive:

 $\mathcal{P} = \{\mathcal{M} : \mathcal{M}(\varepsilon) \text{ halts after an even number of steps}\}$

where ε is the empty input string.

2.3) Prove that \mathcal{P} is recursively enumerable.

Hint — Point 2.3 can be proved by explicitly outlining an enumeration algorithm.

Exercise 3

Consider the following language:

$$S = \left\{ \left(x \in \{0,1\}^*, k \in \mathbb{N} \right) : x \text{ contains a subsequence of } k \text{ adjacent } 0\text{'s} \right\}$$

For example, $(101000101, 3) \in S$ because the binary string contains 3 consecutive zeroes, while $(101000101, 4) \notin S$ because the binary string does not contain 4 consecutive zeroes.

3.1) Prove that $S \in \mathbf{P}$.

3.2) Prove that $S \in \mathbf{L}$.

Hint — Again, both points can be proved by describing an algorithm and showing that it has the required property.