Computability and Computational Complexity
Academic year 2019-2020, first semester
Lecture notes

Mauro Brunato

Version: 2019-10-12

Caveat Lector

The main purpose of these very schematic lecture notes is to keep track of what has been said during
the lectures. Reading this document is not enough to pass the exam. You should also see the linked
citations and footnotes, the additional material and the references provided on the following webpage,
which will also contain the up-to-date version of these notes:

https://comp3.eu/

To check for new version of this document, please compare the version date on the title page the one
reported on the webpage.

https://comp3.eu/

Changelog

2019-10-12
e Universal Turing machines, uncomputability results.
e Busy beaver functions and results.
e Turing reductions

e Self-assessment questions and exercises.

2019-10-01

e First lectures: basic definitions, Collatz example, Turing machines, computational power of
Turing machines.

Contents

(I Lecture notes|

[1__Computability]|
[T.T Basic definitions and examples| i

[L.1.1 A possibly non-recursive set| L L Lo
1.2 A computational model: the Turing machine|
I1.2.1 Examples|o
[1.2.2 Computational power of the Turing Machine|
1.2.3 niversa ring machines|. L
1.2. e Church-Turing thesis|
1.3 Uncomputable functions| o
I1.3.1 Finding an uncomputable function| oo

[1.3.2 Recursive enumerability of halting computations|

|1.3.3 Another uncomputable function: the Busy Beaver game|
L34 Reductions o v oot e e

(II Questions and exercises|

|A Self-assessment questions|
IA.1 Computability] e
A 1.1 Recursive and recursively enumerable Sets| v . o oot e

Ai2 Turing machines] o v v v i o
[B_Exercises|

18

19
19
19
19

20

Part 1

Lecture notes

Chapter 1

Computability

1.1 Basic definitions and examples

In computer science, every problem instance can be represented by a finite sequence of symbols from
a finite alphabet, or equivalently as a natural number. In the following, let ¥ denote a finite set of
symbols. X will be the alphabet we are going to use to represent things. Pairs, triplets, n-tuples of
symbols are represented by the usual cartesian product notations:

n times

——
W=ExT={(st)]5,t€¥}, T =YxTLxD ... X2 =UxTx---x3%

As a shorthand, instead of representing tuples of symbols in the formal notation (si,s2,...,s,) we
will use the simpler “string” notation s1ss---s,. As a particular case, let ¢ = () represent the empty
tuple (with n = 0 elements). Therefore, the set of strings of length n can be defined by induction:

n {e} ifn=0
E =
L x ¥l oifn > 0.

Finally, the Kleene closure of this sequence is the set of all finite strings on the alphabet X:
o=z
neN

It is worthwile to note that X*, while being infinite in itself, only contains finite sequences of symbols.
Moreover, for every n € N, X" is finite (|X"| = |X|”, where | - || represents the cardinality of a set).
Our main focus will be on functions that map input strings to output strings on a given alphabet,

f:E =3
or in functions that map strings onto a “yes”/“no” decision set,
fE = {01}

in such case, we talk about a decision problem.
Examples:

e Given a natural number n, is n prime?
e Given a graph, what is the maximum degree of its nodes?

e From a customer database, select the customers that are more than fifty years old.

e Given a set of pieces of furniture and a set of trucks, can we accommodate all the furniture in
the trucks?

As long as the function’s domain and codomain are finite, they can be represented as sequences of
symbols, hence of bits, therefore as strings (although some representations make more sense than
others); observe that some problems among those listed are decision problems, others aren’t.

Decision functions and sets

There is a one-to-one correspondence between decision functions on X* and subsets of ¥*. Given
f:¥* = {0,1}, its obvious set counterpart is the subset of strings for which the function answers 1:

Sp={seX": f(s) =1}.
Conversely, given a string subset S C ¥*, we can always define the function that decides over elements
of the set:
1 ifses
fs(s) = {o ifsdS.

Given a function, or equivalently a set, we say that it is computableﬂ (or decidable, or recursive)
if and only if a procedure can be described to compute the function’s outcome in a finite number of
steps. Observe that, in order for this definition to make sense, we need to define what an acceptable
“procedure” is; for the time being, let us intuitively consider any computer algorithm.

Examples of computable functions and sets are the following:

e the set of even numbers;
e a function that decides whether a number is prime or not;
e any finite or coﬁniteﬂ set, and any function that decides on them:;

e any function studied in a basic Algorithms course (sorting, hashing, spanning trees on graphs. ..).

1.1.1 A possibly non-recursive set
Collatz numbers

Given n € N\ {0}, let the Collatz sequence starting from n be defined as follows:

a = n
{ai/2 if a; is even

) 1=1,2,...
3a; +1 if a; is odd,

Qi1

In other words, starting from n, we repeatedly halve it while it is even, and multiply it by 3 and add
1 if it is odd.

The Collatz conjectur(ﬂ states that every Collatz sequence eventually reaches the value 1. While
most mathematicians believe it to be true, nobody has been able to prove it.

Suppose that we are asked the following question:

“Given n € N\ {0}, does the Collatz sequence starting from n reach 1?”

Thttps://en.wikipedia.org/wiki/Recursive_set
2A set is cofinite when its complement is finite.
Shttps://en.wikipedia.org/wiki/Collatz_conjecture

https://en.wikipedia.org/wiki/Recursive_set
https://en.wikipedia.org/wiki/Collatz_conjecture

function collatz (n € N\ {0}) € {0,1}
repeat
if n = 1 then return 1
if n is even

|: then n < n/2

function collatz (n € N\ {0}) € {0,1}
return 1

elsen < 3n+1
return 0

Figure 1.1: Left: the only way I know to decide whether n is a Collatz number isn’t guaranteed to
work. Right: a much better way, but it is correct if and only if the conjecture is true.

If the answer is “yes,” let us call n a Collatz number. Let f : N\ {0} — {0,1} be the corresponding
decision function:

n=12...

F(n) 1 if n is a Collatz number
n)=
0 if n is not a Collatz number,

Then the Collatz conjecture simply states that all positive integers are Collatz numbers or, equivalently,
that f(n) =1 on its whole domain.

Decidability of the Collatz property

Let us consider writing a function, in any programming language, to answer the above question, i.e., a
function that returns 1 if and only if its argument is a Collatz number. FigurdI.1] details two possible
ways to do it, and both have problems: the rightmost one requires us to have faith in an unproven
mathematical conjecture; the left one only halts when the answer is 1 (the final return is never
reached).

In more formal terms, we are admitting that we are not able to prove that the Collatz property
is decidable (i.e., that there is a computer program that always terminates with the correct answer")).
However, we have provided a procedure that terminates with the correct answer when the answer is
“yes” (the function is not total, in the sense that it doesn’t always provide an answer). We call such
set recursively enumerabl (or RE, in short).

Having a procedure that only terminates when the answer is “yes” maight not seem much, but it
actually allows us to enumerate all numbers having the property. The function in Fig. shows the
basic trick to enumerate a potentially non-recursive set, applied to the Collatz sequence: the diagonal
methocﬂ Rather than performing the whole decision function on a number at a time (which would
expose us to the risk of an endless loop), we start by executing the first step of the decision function
for the first input (n = 1), then we perform the second step for n = 1 and the first step of n = 2; at
the i-th iteration, we perform the i-th step of the first input, the (i — 1)-th for the second, down to the
first step for the i-th input. This way, every Collatz number will eventually hit 1 and be printed out.

The naif approach of following the table rows is not guaranteed to work, since it would loop
indefinitely, should a non-Collatz number ever exist.

Observe that the procedure does not print out the numbers in increasing order.

4

1.2 A computational model: the Turing machine

Among the many formal definition of computation proposed since the 1930s, the Turing Machine (TM
for short) is by far the most similar to our intuitive notion. A Turing Machineﬂ is defined by:

4To the best of my knowledge, which isn’t much.
Shttps://en.wikipedia.org/wiki/Recursively_enumerable_set
6See https://comp3.eu/collatz.py| for a Python version.
"https://en.wikipedia.org/wiki/Turing_machine

https://en.wikipedia.org/wiki/Recursively_enumerable_set
https://comp3.eu/collatz.py
https://en.wikipedia.org/wiki/Turing_machine

1. procedure enumerate_collatz

2. [queue « []
forn < 1.. x Repeat for all numbers
[queue, < 71 Add n to queue with itself as starting value
fori«+1..n: Iterate on all numbers up to n
[if queue, =1 i is Collatz, print and forget it
print i

|: delete queue, deleted means “Already taken care of”
else if queue, is not deleted if current number wasn’t printed and forgotten yet
if queue, is even Advance i-th sequence in the queue by one step

l: then queue; < queue; / 2

L L |: else queue; < 3 - queue, + 1

VSIS 4

Figure 1.2: Enumerating all Collatz numbers: top: the algorithm; bottom: a working schematic

e a finite alphabet 3, with a distinguished “default” symbol (e.g., “.” or “0”) whose symbols are
to be read and written on an infinitely extended tape divided into cells;

e a finite set of states @, with a distinguished initial state and one or more distinguished halting
states;

e a set of rules R, described by a (possibly partial) function that associates to a pair of symbol
and state a new pair of symbol and state plus a direction:

R:QxY¥—XxQx{L,R}.

Initially, all cells contain the default symbol, with the exception of a finite number; the non-blank
portion of the tape represent the input of the TM. The machine also maintains a current position on
the tape. The machine has an initial state qo € Q. At every step, if the machine is in state g € @, and
the symbol o € ¥ appears in the current position of the tape, the machine applies the rule set R to
(g,0):

(o',q,d) = R(q,0).

The machine writes the symbol ¢’ on the current tape cell, enters state ¢’, and moves the current
position by one cell in direction d. If the machine enters one of the distinguished halting states, then
the computation ends. At this point, the content of the (non-blank portion of) the tape represents the
computation’s output.

Observe that the input size for a TM is unambiguously defined: the size of the portion of tape that
contains non-default symbols. Also the “execution time” is well understood: it is the number of steps
before halting. Therefore, when we say that the computational complexity of a TM for inputs of size n
is T'(n) then we mean that 7T'(n) is the worst-case number of steps that a TM performs before halting
when the input has size n.

1.2.1 Examples

In order to experiment with Turing machines, many web-based simulators are available. The two top
search results for “turing machine demo” are

e http://morphett.info/turing/turing.html
e https://turingmachinesimulator.com/.

Students are invited to read the simplest examples and to try implementing a TM for some simple
problem (e.g., some arithmetic or logical operation on binary or unary numbers). Also, see the examples
provided in the course web page.

1.2.2 Computational power of the Turing Machine

With reference to more standard computational models, such as the Von Neumann architecture of all
modern computers, the TM seems very limited; for instance, it lacks any random-access capability.
The next part of this course is precisely meant to convince ourselves that a TM is exactly as powerful as
any other (theoretical) computational device. To this aim, let us discuss some possible generalizations.

Multiple-tape Turing machines

A k-tape Turing machine is a straightforward generalization of the basic model, with the following
variations:

e the machine has k unlimited tapes, each with an independent current position;

http://morphett.info/turing/turing.html
https://turingmachinesimulator.com/

e the rule set of the machine takes into account k symbols (one for each tape, from the current
position) both in reading and in writing, and k movement directions (each current position is
independent), with the additional provision of a “stay” direction S in which the position does
not move:

R:Q x> 5 3% xQ x {L,R,S}*.

Multiple-tape TMs are obviously more practical for many problems. For example, try following the
execution of the binary addition algorithms below:

e 1l-tape addition from http://morphett.info/turing/turing.html: select “Load an example
program/Binary addition”;

e 3-tape addition from https://turingmachinesimulator.com/: select “Examples/3 tapes/Binary
addition”.

However, it turns out that any k-tape Turing machine can be “simulated” by a 1-tape TM, in the
sense that it is possible to represent a k-tape TM on one tape, and to create a set of 1-tape rules that
simulates the evolution of the k-tape TM. Of course, the 1-tape machine is much slower, as it needs
to repeatedly scan its tape back and forth just to simulate a single step of the k-tape one.

Theorem 1 (k-tape Turing machine emulation). If a k-tape Turing machine M takes time T(n) on
inputs of time m, then it is possible to program a 1-tape Turing machine M’ that simulates it (i.e.,
essentially performs the same computation) in time O(T(n)?).

Proof. See Arora-Barak, Claim 1.9 in the public draft.

Basically, the k tapes of M are encoded on the single tape of M’ by alternating the cell contents of
each tape; in order to remember the “current position” on each tape, every symbol is complemented
by a different version (e.g., a “hatted” symbol) to be used to mark the current position. To emulate a
step of M, the whole tape of M’ is first scanned in order to find the & symbols in the current positions;
then, a second scan is used to replace each symbol in the current position with the new symbol; then
a third scan performs an update of the current positions.

Since M halts in T'(n) steps, no more that T'(n) cells of the tapes will ever be visited; therefore,
every scan performed by M’ will take at most kT (n) steps. Given some more details, cleanup tasks
and so on, the simulation of a single step of M will take at most 5kT'(n) steps by M’, therefore the
whole simulation takes 5kT'(n)? steps. Since 5k is constant wrt the input size n, the result follows. [

Size of the alphabet

The number of symbols that can be written on a tape (the size of the alphabet) can make some
tasks easier; for instance, in order to deal with binary numbers a three-symbol alphabet (“0”, “17,
and the blank as a separator) is convenient, while working on words is easier if the whole alphabet is
available.

While a 1-sized alphabet ¥ = {_} is clearly unfit for a TM (no way to store information on the
tape), a 2-symbol alphabel is enough to simulate any TM:

Theorem 2 (Emulation by a two-symbol Turing Machine). If a Turing machine M with a k-symbol
alphabet ¥ takes time T(n) on an input of size n, then it can be simulated by a Turing machine M’
with a 2-symbol alphabet ¥’ = {0,1} in time O(T(n)) (i.e., with a linear slowdown).

Proof. See Arora-Barak, claim 1.8 in the public draft, where for convenience machine M’ is assumed
to have 4 symbols and the tape(s) extend only in one direction.

Every symbol from alphabet ¥ can be encoded by [log, k] binary digits from ¥'. Every step of
machine M will be simulated by M’ by reading [log, k] cells in order to reconstruct the current symbol
in M; the symbol being reconstructed bit by bit is stored in the machine state (therefore, M’ requires
many more states that M). This scan is followed by a new scan to replace the encoding with the

http://morphett.info/turing/turing.html
https://turingmachinesimulator.com/

new symbol (again, all information needed by M’ will be “stored” in its state), and a third (possibly
longer) scan to place the current position to the left or right encoding. Therefore, a step of M will
require less than 4[log, k] steps of M/, and the total simulation time will be

T'(n) < 4flog, k1T (n).

Simulating other computational devices

Although they are very simple devices, we can convince ourselves quite easily that Turing machines
can emulate a simple CPU/RAM architecture: just replace random access memory with sequential
search on a tape (tremendous slowdown, but we are not concerned by it now), the CPU’s internal
registers can be stored in separate tapes, and every opcode of the CPU corresponds to a separate set
of states of the machine. Operations such as “load memory to a register,” “perform an arithmetic or
logical operation between registers,” “conditionally junp to memory” and so on can be emulated.

1.2.3 Universal Turing machines

The main drawback of TMs, as described up to now, with respect to our modern understanding of
computational systems, is that each serves one specific purpose, encoded in its rule set: a machine to
add numbers, one to multiply, and so on.

However, it is easy to see that a TM can be represented by a finite string in a finite alphabet:
each transition rule can be seen as a quintuplet, each from a finite set, and the set of rules is finite.
Therefore, it is possible to envision a TM U that takes another TM M as input on its tape, properly
encoded, together with an input string s for M, and simulates M step by step on input s. Such
machine is called a Universal Turing machine (UTM).

One such machine, using a 16 symbol encoding and a single tape, is described in

https://www.dropbox.com/sh/u7jsxm232giwown/AADTRNgjKBIe_QZGyicoZWjYa/utm.pdf
and can be seen in action at the aforementioned link http://morphett.info/turing/turing.html)
clicking “Load an example program / Universal Turing machine.”

1.2.4 The Church-Turing thesis

We should be convinced, by now, that TMs are powerful enough to be a fair computational model, at
least on par with any other reasonable definition. We formalize this idea into a sort of “postulate,”
i.e., an assertion that we will assume to be true for the rest of this course.

Postulate 1 (Church-Turing thesis). Turing machines are at least as powerful as every physically
realizable model of computation.

This thesis allows us to extend every the validity negative result about TMs to every physical
computational device.

1.3 Uncomputable functions

It is easy to understand that, even if we restrict our interest to decision functions, almost all functions
are not computable by a TM. In fact, as the following Lemmata [1| and [2[show, there are simply too
many functions to be able to define a TM for each of them.

Lemma 1. The set of decision functions f : N — {0,1} (or, equivalently, f : ¥* — {0,1}), is
uncountable.

10

https://www.dropbox.com/sh/u7jsxm232giwown/AADTRNqjKBIe_QZGyicoZWjYa/utm.pdf
http://morphett.info/turing/turing.html

Proof. By contradiction, suppose that a complete mapping exists from the naturals to the set of
decision functions; i.e., there is a mapping n — f, that enumerates all functions. Define function
fn) = 1 — fu(n). By definition, function f differs from f,, on the value it is assigned for n (if
fn(n) =0 then f(n) =1— fo(n) =1—0=0, and vice versa). Therefore, contrary to the assumption,

the enumeation is not complete because it excluded function f . O

Lemmal[I]is an example of diagonal argument, introduced by Cantor in order to prove the uncount-
ability of real numbers: focus on the “diagonal” values (in our case f,(n), by using the same number
as function index and as argument), and make a new object that systematically differs from all that
are listed.

Lemma 2. Given a finite alphabet 3, the number of TMs on that alphabet is countable.

Proof. As shown in the Universal TM discussion, every TM can be encoded in some appropriate
alphabet. As shown by Theorem [2] every alphabet with at least two symbols can emulate and be
emulated by every other alphabet. Therefore, it is possible to define a representation of any TM in
any alphabet.

We know that strings can be enumerated: first we count the only string in X°, then the strings
in ¥!, then those in ¥? (e.g., in lexicographic order), and so on. Since every string s € £* is finite
(s € 2I¥1), sooner or later it will be enumerated. Therefore there is a mapping N — X*, i.e., ©* is
countable.

Since TMs can be mapped on a subset of ¥* (those strings that define TMs according to the chosen
encoding), and are still infinite, it follows that TMs are countable. O

Therefore, whatever way we choose to enumerate TMs and to associate them with decision func-
tions, we will inevitably leave out some functions. Hence, given that TMs are our definition of com-
puting,

Corollary 1. There are uncomputable decision functions.

1.3.1 Finding an uncomputable function

Let us introduce a little more notation. As already defined, the alphabet 3 contains a distinguished,
“default” symbol, which we assume to be “.”. Before the computation starts, only a finite number of
cell tapes have non-blank symbols. Let us define as “input” the smallest, contiguous set of tape cells
that contains all non-blank symbols.

A Turing machine transforms an input string into an output string (the smallest contiguous set
of tape cells that contain all non-blank symbols at the end of the computation), but it might never
terminate. In other words, if we see a TM machine as a function from X* to ¥* it might not be a total
function.

As an alternative, we may introduce a new value, oo, as the “value” of a non-terminating com-
putation; given a Turing machine M, if its compuattion on input s does not terminate we will write
M(s) = 0.

While TM encodings have a precise syntax, so that not all strings in ¥* are syntactically valid
encodings of some TM, we can just accept the convention that any such invalid string encodes the
TM that immediately halts (think of s as a program, executed by a UTM that immediately stops if
there is a syntax error). This way, all strings can be seen to encode a TM, and most string just encode
the “identity function” (a machine that halts immediately leaves its input string unchanged). Let us
therefore call Mg the TM whose encoding is string s, or the machine that immediately terminates if
s is not a valid encoding.

With this convention in mind, we can design a function whose outcome differs from that of any
TM. We employ a diagonal technique akin to the proof of Lemma [I} for any string a € Xx, we define
our function to differ from the output of the TM encoded by « on input « itself.

11

Theorem 3. Given an alphabet ¥ and a encoding o — My, of TMs in that alphabet, the function

UC(a) = {O PMal@) =1 g

1 otherwise

18 uncomputable.

Proof. Let M be any TM, and let m € £* be its encoding (i.e., M = M,,). By definition, UC(m)
differs from M(m): the former outputs one if and only if the latter outputs anything else (or does not
terminate).

See also Arora-Barak, theorem 1.16 in the public draft. O

What is the problem that prevents us from computing UC? While the definition is quite straight-
forward, being able to emulate the machine M, on input « is not enough to always decide the value
of UC(a). We need to take into account also the fact that the emulation might never terminate. This
allows us to prove, as a corollary of the preceding theorem, that there is no procedure that always
determines whether a machine will terminate on a given input.

Theorem 4 (Halting problem). Given an alphabet ¥ and a encoding oo — M., of TMs in that alphabet,
the function
0 if Ms(t)=00

) V(s,t) € * x ¥*
1 otherwise

HALT(s,t) = {

(i.e., which returns 1 if and only if machine My halts on input t) is uncomputable.

Proof. Let’s proceed by contradiction. Suppose that we have a machine H which computes HALT (s, t)
(i.e., when run on a tape containing a string s encoding a TM and a string ¢, always halts returning 1
if machine M would halt when run on input ¢, and returning 0 otherwise). Then we could use H to
compute function UC.

For convenience, let us compute UC' using a machine with two tapes. The first tape is read-only and
contains the input string o € ¥*, while the second will be used as a work (and output) tape. To
compute UC, the machine will perform the following steps:

e Create two copies of the input string « onto the work tape, separated by a blank (we know we
can do this because we can actually write the machine);

e Execute the machine H (which exists by hypothesis) on the work tape, therefore calculating
whether the computation M, (a)) would terminate or not. Two outcomes are possible:

— If the output of H is zero, then we know that the computation of M, (a)) wouldn’t terminate,
therefore, by definition of function UC, we can output 1 and terminate.

— If, on the other hand, the output of H is one, then we know for sure that the computation
M, (a) would terminate, and we can emulate it with a UTM U (which we know to exist)
and then “inverting” the result a la UC, by executing the following steps:

x As in the first step, create two copies of the input string o onto the work tape, separated
by a blank;
*x Execute the UTM U on the work tape, thereby emulating the computation M, («);

x At the end, if the output of the emulation was 1, then replace it by a 0; if it was
anything other than 1, replace it with 1.

This machine would be able to compute UC by simply applying its definition, but we know that UC
is not computable by a TM; all steps, apart from 7, are already known and computable. We must
conclude that H cannot exist.

See also Arora-Barak, theorem 1.17 in the public draft. O

12

This proof employs a very common technique of CS, called reduction: in order to prove the im-
possibility of HALT, we “reduce” the computation of UC to that of HALT; since we know that the
former is impossible, we must conclude that the latter is too.

The Haliting Problem for machines without an input

Consider the special case of machines that do not work on an input string; i.e., the class of TMs that
are executed on a completely blank tape. Asking whether a computation without input will eventually
halt might seem a simpler question, because we somehow restrict the number of machines that we are
considering.

Let us define the following specialized halting function:

0 if My(e) =00 Vs € T

HALT.(s) = HALT (s,e) =]
1 otherwise

It turns out that if we were able to compute HALT, then we could also compute HALT":
Theorem 5. HALT. is not computable.

Proof. By contradiction, suppose that there is a machine H’ that computes HALT.. Such machine
would be executed on a string s on the tape, and would return 1 if the machine encoded by s would
halt when run on an empty tape, 0 otherwise.

Now, suppose that we are asked to compute HALT(s,t) for a non-empty input string ¢. We can
transform the computation M(¢) on a computation My (g) on an empty tape where s’ contains the
whole encoding s, but prepended with a number of states that write the string ¢ on the tape. In other
words, we transform a computation on a generic input into a computation on an empty tape that
writes the desired input before proceeding.

After modifying the string s into s’ on tape, we can run H’ on it. The answer of H' is precisely
HALT(s,t), which would therefore be computable. O

Again, the result was obtained by reducing a known impossible problem, HALT to the newly
introduced one, HALT,.

1.3.2 Recursive enumerability of halting computations

Although HALT is not computable, it is clearly recursively enumerable. In fact, we can just take a
UTM and modify it to erase the tape and write “1” whenever the emulated machine ends, and we
would have a partial function that always accepts (i.e., returns 1) on terminating computations.

It is also possible to output all (s,t) € ¥* x 3* pairs for which M(¢) halts by employing a diagonal
method similar to the one used in Fig. [1.9

Function HALT is our first example of R.E. function that is provably not recursive.

Observe that, unlike recursivity, R.E. does not treat the “yes” and “no” answer in a symmetric
way. We can give the following:

Definition 1. A decision function f : 3* — {0,1} is co-R.E. if it admits a TM M such that M(s)
halts with output 0 if and only if f(s) = 0.

In other words, co-R.E. functions are those for which it is possible to compute a “no” answer, while
the computation might not terminate if the answer is “yes”. Clearly, if f is R.E., then 1 — f is co-R.E.

Theorem 6. A decision function f : X* — {0, 1} is recursive if and only if it is both R.E. and co-R.E.

8See the figure at https://en.wikipedia.org/wiki/Recursively_enumerable_set#Examples

13

https://en.wikipedia.org/wiki/Recursively_enumerable_set#Examples

Proof. Let us prove the “only if” part first. If f is recursive, then there is a TM M that computes it.
But M clearly satisfies both the R.E. definition (M (s) halts with output 1 if and only if f(s) = 1)
and the co-R.E. definition (M ;(s) halts with output 0 if and only if f(s) = 0).

About the “if” part, if f is R.E., then there is a TM M; such that M;(s) halts with output 1 iff
f(s) = 1; since f is also co-R.E., then there is also a TM M, such that M (s) halts with output 0
iff f(s) = 0. Therefore, a machine that alternates one step of the execution of M; with one step of
My, halting when one of the two machines halts and returning its output, will eventually terminate
(because, whatever the value of f, at least one of the two machines is going to eventually halt) and
precisely decides f. O

Observe that, as already pointed out, any definition given on decision functions with domain ¥*
also works on domain N (and on any other discrete domain), and can be naturally extended on subsets
of strings or natural numbers. We can therefore define a set as recursive, recursively enumerable, or
co-recursively enumerable.

Decision and acceptance

In the following, we will use the following terms when speaking of languages.

Definition 2. o If language S is recursively enumerable, i.e. there is a TM M such that M(s) =
1 & se S, then we say that M accepts S (or that it “recognizes” it).

e Given a TM M, the language recognized by it (i.e., the set of all inputs that are accepted by the
machine) is represented by L(M).

o [f language S is recursive, i.e. there is a TM M that accepts it and always halts, then we say
that M decides S.

In the case of functions transforming strings, we will use the following terms.

Definition 3. If a function f : ¥* — ¥* is computable, i.e. there is a TM M that always halts and
such that M(s) = f(s), then we say that M computes f.

We generalize the notion to functions outside the realm of strings by considering suitable represen-
tations. E.g., a machine M computes an integer function f : N — N if it transforms a representation
of n € N (e.g., its decimal, binary or unary notation) into the corresponding representation of f(n).
Since all representations of integer numbers can be converted to each other by a TM, the choice of
a specific one is arbitrary and does not impact on the definition. Therefore, we can resort to unary
notation and say that

Theorem 7. A function f : N — N is computable if and only if there is a TM M on alphabet
¥ ={1,.} such that
YneN M@I") =1/,

Le., the TM M maps a string of n ones into a string of f(n) ones.

1.3.3 Another uncomputable function: the Busy Beaver game

Since we might be unable to tell at all whether a specific TM will halt, the question arises of how
complex can machine’s output be for a given number of states.

Definition 4 (The Busy Beaver game). Among all TMs on alphabet {0,1} and with n = |Q)| states
(not counting the halting one) that halt when run on an empty (i.e., all-zero) tape:

e et 3(n) be the largest number of (not necesssarily consecutive) ones left by any machine upon
halting;

14

e let S(n) be the largest number of steps performed by any such machine before halting.

Function X (n) is known as the busy beaver function for n states, and the machine that achieves it
is called the Busy Beaver for n states.

Both functions grow very rapidly with n, and their values are only known for n < 4. The current
Busy Beaver candidate with n = 5 states writes more than 4K ones before halting after more than
47M steps.

Theorem 8. The function S(n) is not computable.

Proof. Suppose that S(n) is computable. Then, we could create a TM to compute HALT, (the variant
with empty input) on a machine encoded in string s as follows:

on input s
count the number n of states of M
compute £ + S(n)
emulate M for at most ¢ steps
if the emulation halts before £ steps
then M clearly halts: accept and halt
|: else M, takes longer than the BB: reject and halt

O

Observe that, by construction, 3(n) < S(n) (a TM cannot write more than a symbol per step). The
next result is even stronger. Given two functions f, g : N — N, we say that f “eventually outgrows” g,
written f >gg, if f(n) > g(n) for a sufficiently large value of n:

f>rg< 3N :Vn>Nf(n) > g(n).
Theorem 9. The function X(n) eventually outgrows any computable function.

Proof. Let f: N — N be computable. Let us define the following function:

n

F(n) =Y _[f(i)+i.

=0

By definition, F' clearly has the following properties:

F(n)> f(n) YneN, (1.1)
F(n) >n? Vne€N, (1.2)
Fin+1)>F(n) YneN (1.3)

the latter because F(n + 1) is equal to F(n) plus a strictly positive term. Moreover, since f is
computable, F' is computable too. Suppose that My is a TM on alphabet {0, 1} that, when positioned
on the rightmost symbol of an input string of z ones and executed, outputs a string of F(z) ones (i.e.,
computes the function 2 — F(z) in unary representation) and halts below the rightmost one. Let C
be the number of states of Mp.

Given an arbitrary integer z € N, we can define the following machine M running on an initially
empty tape (i.e., a tape filled with zeroes):

e Write = ones on the tape and stop at the rightmost one (i.e., the unary representation of x: it
can be done with x states, see Exercise |2| at page ;

e Execute MF on the tape (therefore computing F(z) with C' states);

e Execute MF again on the tape (therefore computing F(F(z)) with C' more states).

15

The machine M works on alphabet {0, 1}, starts with an empty tape, ends with F(F(z)) ones written
on it and has z+2C states; therefore it is a busy beaver candidate, and the (z + 2C)-state busy beaver
must perform at least as well:

Y(z+2C) > F(F(x)). (1.4)

Now,
F(z) > 2* >px +2C;

the first inequality comes from (1.2)), while the second stems from the fact that 22 eventually dominates
any linear function of z. By applying F' to both the left- and right-hand sides, which preserves the
inequality sign because of (|1.3)), we get

F(F(z))>g F(z +2C). (1.5)
By concatenating , and , we get
Y(x+2C) > F(F(x)) > F(x+2C) > f(x +2C).
Finally, by replaxing n = z 4+ 2C', we obtain
E(n)>Eg f(n).

This proof is based on the original one by Rado (1962)ﬂ

1.3.4 Reductions

Note that a few results in the past sections (Theorems and [8) made use of similar arguments:
“If A were computable, then we could use it to solve B; however, we know that B is uncomputable,
therefore A is too.” Now we want to formalize such reasoning scheme.

Definition 5. Let L1 C X7 and Ly C X3 be two languages (on possibly different alphabets). A function
f:X] =35
is said to be a reduction from Ly to Ly if
Vs e€X] s€L; & f(s) € Lo.

Basically, we can use a reduction to transform the question “Does s belong to L17” into the
equivalent question “Does f(s) belong to Ly?”

Clearly, to be useful in computability results, f has to be computable (meaning, as usual, that
there is a TM M that computes f).

Definition 6. We say that f : ¥ — X5 is a Turing reduction from L; C X7 to Ly C X5 if it is a
reduction from L1 to Ly and it is computable.

If f is a reduction from L; to Ly we write Ly < Lo. In general, if there is a Turing reduction from
L1 to Ly we say that L is Turing reducible to Lo and write Ly <p Lo.

Note that we do not require f to have any specific property such as being injective or surjective:
just that it “does its work” by transforming any element of L; into an element of Lo and every string
that is not in Ly into a string that is not in L.

All computability proofs by reduction follow one of the schemes listed in the following theorem:

9See for instance:
http://computation4cognitivescientists.weebly.com/uploads/6/2/8/3/6283774/rado-on_non-computable_
functions.pdf

16

http://computation4cognitivescientists.weebly.com/uploads/6/2/8/3/6283774/rado-on_non-computable_functions.pdf
http://computation4cognitivescientists.weebly.com/uploads/6/2/8/3/6283774/rado-on_non-computable_functions.pdf

Theorem 10. Let languages L1 and Lo and function f be such that Ly <j Lo; then
1. if Lo is decidable and f is computable, then Ly is decidable too;
2. if L1 is undecidable and f is computable, then Lo is undecidable too;

8. If Ly is undecidable and Lo is decidable, then f is uncomputable.

Proof. The first point is proven by showing that, if we have a machine for f and a machine for
Ly we can build a machine for L;. Let My, be a TM that decides Ly, and let My be a TM
that computes f. Then the machine M that concatenates an execution of My and an execution
of My,, i.e. computes M(s) = My, (My(s)), decides Ly by definition of f.

The other two points follow by contradiction.
O

In other words, by writing L1 <7 Lo we mean that L; is “less uncomputable” than Ls.
Observe that the proofs of Theorems [4] and [5] follow the second scheme of Theorem while the
proof of Theorem [§| follows the third scheme, where the function S(n) is part of the reduction.

17

Part 11

Questions and exercises

18

Appendix A

Self-assessment questions

This chapter collects a few questions that students can try answering to assess their level of preparation.

A.1 Computability

A.1l.

1.

1 Recursive and recursively enumerable sets

Why is every finite set recursive?
(Hint: we need to check whether s is in a finite list)

Try to prove that if a set is recursive, then its complement is recursive too.
(Hint: invert 0 and 1 in the decision function’s answer)

Let S be a recursively enumerable set, and let algorithm A enumerate all elements in S. Prove
that, if A lists the elements of S in increasing order, then S is recursive.
(Hint: what if n ¢ S7 Is there a moment when we are sure that n will never be listed by A7)

.2 Turing machines

Why do we require a TM’s alphabet ¥ and state set @ to be finite, while we accept the tape to
be infinite?

. What is the minimum size of the alphabet to have a useful TM? What about the state set?

. Try writing machines that perform simple computations or accept simply defined strings.

shapes.misc,shadows,positioning,automata

19

Appendix B

Exercises

Preliminary observations

Since the size of the alphabet, the number of tapes or the fact that they are infinite in one or both
directions have no impact on the capabilities of the machine and can emulate each other, unless the
exercise specifies some of these details, students are free to make their choices.

As for accepting or deciding a language, many conventions are possible. The machine may:

e erase the content of the tape and write a single “1” or “0”;

e write “1” or “0” and then stop, without bothering to clear the tape, with the convention that
acceptance is encoded in the last written symbol;

e have two halting states, halt-yes and halt-no;
e any other unambiguous convention;

with the only provision that the student writes it down in the exercise solution.

20

Exercise 1

For each of the following classes of Turing machines, decide whether the halting problem is computable
or not. If it is, outline a procedure to compute it; if not, prove it (usually with with a reduction from
the general halting problem). Unless otherwise stated, always assume that the non-blank portion of
the tape is bounded, so that the input can always be finitely encoded if needed.

1.1) TMs with 2 symbols and at most 2 states (plus the halting state), starting from an empty
(all-blank) tape.

1.2) TMs with at most 100 symbols and 1000000 states.

1.3) TMs that only move right;

1.4) TMs with a circular, 1000-cell tape.

1.5) TMs whose only tape is read-only (i.e., they always overwrite a symbol with the same one);

Hint — Actually, only one of these cases is uncomputable. . .

Solution 1

The following are minimal answers that would guarantee a good evaluation on the test.

1.1) The definition of the machine meet the requirements for the Busy Beaver game; Since we know
the BB for up to 4 states, it means that every 2-state, 2-symbol machine has been analyzed on an
empty tape, and its behavior is known. Therefore the HP is computable for this class of machines.
1.2) As we have seen in the lectures, 100 symbols and 1,000,000 states are much more than those needed
to build a universal Turing machine ¢/. If this problem were decidable by a machine, say H1 000,000,
then we could solve the general halting problem “does M halt on input s” by asking H1 000,000 whether
U would halt on input (M, s) or not. In other words, we could reduce the general halting problem to
it, therefore it is undecidable.

1.3) If the machine cannot visit the same cell twice, the symbol it writes won’t have any effect on its
future behavior. Let us simulate the machine; if it halts, then we output 1. Otherwise, sooner or later
the machine will leave on its left all non-blank cells of the tape: from now on, it will only see blanks,
therefore its behavior will only be determined by its state. Take into account all states entered after
this moment; as soon as a state is entered for the second time, we are sure that the machine will run
forever, because it is bound to repeat the same sequence of states over and over, and we can interrupt
the simulation and output 0; if, on the other hand, the machine halts before repeating any state, we
output 1.

1.4) As it has a finite alphabet and set of states (as we know from definition), the set of possible
configurations of a TM with just 1000 cells is fully identified by (i) the current state, (ii) the current
position, and (iii) the symbols on the tape, for a total of |Q] x 1000 x |%]1000 configurations. While this
is an enormous number, a machine running indefinitely will eventually revisit the same configuration
twice. So we just need to simulate a run of the machine: as soon as a configuration is revisited, we
can stop simulating the machine and return 0. If, on the other hand, the simulation reaches the halt
state, we can return 1.

1.5) Let n = |Q| be the number of states of the machine. Let us number the cells with consecutive
integer numbers, and consider the cells a and b that delimit the non-null portion of the tape. Let us
simulate the machine. If the machine reaches cell a—(n+1) or b+n+1, we will know that the machine
must have entered some state twice while in the blank portion, therefore it will go on forever: we can
stop the simulation and return 0. If, on the other hand, the machine always remains between cell
a—n and b+ n, then it will either halt (then we return 1) or revisit some already visited configuration
in terms of current cell and state; in such case we know that the machine won’t stop because it will
deterministically repeat the same steps over and over: we can then stop the simulation and return 0.

21

Exercise 2

2.1) Complete the proof of Theorem @] by writing down, given a positive integer n, an n-state Turing
machine on alphabet {0,1} that starts on an empty (i.e., all-zero) tape, writes down n consecutive
ones and halts below the rightmost one.

2.2) Test it for n=3.

Solution 2

2.1) Here is a possible solution:

0 1
$1 1, right, s 1, right, halt
So 1, right, s3 —

S; ‘ 1, I‘ight, 51'.+1 ‘ —

Sp—1 1, right, s, —
Sn 1, left, sq —

k2

Entries marked by “—
move.
2.2) For n = 3, the machine is

are irrelevant, since they are never used. Any state can be used for the final

0 1

s1 | 1, right, so | 1, right, halt
so | 1, right, s3 —
S3 1, left, S1 —

Here is a simulation of the machine, starting on a blank (all-zero) tape:

0Oojo0j0(0j0|0]O

)

22

Exercise 3

3.1) Write a Turing machine according to the following specifications:
e the alphabet is ¥ = {_, 0,1}, where ‘. is the default symbol;
e it has a single, bidirectional and unbounded tape;

e the input string is a finite sequence of symbols in {0, 1}, surrounded by endless ‘.’ symbols on
both sides;

e the initial position of the machine is on the leftmost symbol of the input string;

e every ‘1’ that immediately follows ‘0’ must be replaced with ‘.’ (i.e., every sequence ‘01’ must
become ’0.").

e the final position of the machine is at the righmost symbol of the output sequence.

For instance, in the following input case

= l=]11]0| 111|010} O0O]~=]-*=

&

the final configuration should be

=l =]11]0]=]1T|12]0|=]0]0]=]-*=

You can assume that there is at least one non-‘.” symbol on the tape, but considering the more general
case in which the input might be the empty string is a bonus.
3.2) Show the sequence of steps that your machine performs on the input

“010011000111”

Two possible representations of the Turing machine are shown below; many other representations and
transition rule sets are possible.

- 0 1
keep | ./</halt | 0/—/change | 1/—/keep
change | ./+/halt | 0/—/change | ./—/keep

23

0/0,—

0/0,—

24

Exercise 4

Let M represent a Turing Machine, let there be an encoding s — M mapping string s € ¥* to the
TM M, encoded by it. Finally, remember that in our notation M(z) = co means “M does not halt
when executed on input x”. Consider the following languages:

L = {seX|TzM(z)# oo} = {s € " | M, halts on some inputs}

Ly = {seX|VaM,(z) # oo} = {s € £ | M, halts on all inputs}

Ly = {seX"|FaeM;(z) =00} ={s € X" | M, doesn’t halt on some inputs}
Ly = {se¥|VaM,(x) =00} = {s € " | M, doesn’t halt on any input}

4.1) Provide examples of TMs My, ..., My such that My € Lq,..., My € Ly.
4.2) Describe the set relationships between the four languages (i.e., which languages are subsets of
others, which are disjoint, which have a non-empty intersection).

Solution 4

Observe that this exercise has very little to do with computability; however, being able to understand
and answer it is a necessary prerequisite to the course. 4.1) The machine that immediately halts
(sp = HALT) is an example for L; and Ls. The machine that never halts (e.g., always moving right
and staying in state sg) is an example for L3 and Ly.

4.2) If a machine always halts, it clearly halts on some inputs; therefore, Ly C L; (equality is ruled
out by the fact that there are machines that halt on some inputs and don’t on others: Ly N L3 #).
With similar considerations, we can say that Ly C Ls.

Ly is disjoint from both Ls.

Also, observe that Ly = Ly \ Ls and Ly = L3 \ L.

The relationship among the sets can be shown in the following diagram:

Ly

25

	I Lecture notes
	Computability
	Basic definitions and examples
	A possibly non-recursive set

	A computational model: the Turing machine
	Examples
	Computational power of the Turing Machine
	Universal Turing machines
	The Church-Turing thesis

	Uncomputable functions
	Finding an uncomputable function
	Recursive enumerability of halting computations
	Another uncomputable function: the Busy Beaver game
	Reductions

	II Questions and exercises
	Self-assessment questions
	Computability
	Recursive and recursively enumerable sets
	Turing machines

	Exercises

