
Computability and Computational Complexity, A.Y. 2018–2019

Written exam
Mauro Brunato

Wednesday, September 4, 2019

Exercise 1
Let Σ be the set of ASCII character. For each language L ⊆ Σ∗ listed below, tell whether it is
computable or not, and why.

1. L1 = Encodings of Turing Machines that terminate on the empty input string

2. L2 = Encodings of Turing Machines that terminate within 100 steps on every input string

3. L3 = Binary representations of prime numbers

4. L4 = Encodings of Turing Machines that terminate within 100 steps on the empty input string

Assume that the TM encodings are given according to a predetermined set of specifications,
i.e., for a given string it is always possible to say whether it is a TM encoding or not, and it is
always possible to simulate the encoded TM for any finite number of steps on any input string.

Exercise 2

2.1) Define the classes RP, PP and BPP.
2.2) Put them in the correct inclusion order, if any, and explain why.

Exercise 3
Prove that NL ⊆ PSPACE.



Answer outlines

Exercise 1
• L1 is not computable because it is the language of TMs that terminate on the empty input

string. As we know, deciding this language is equivalent to solving HALT, therefore it is
not computable.

• L4 is clearly computable, because we just need to emulate the TM for at most 100 steps
on the empty input.

• L2 is a “complication” of L4, since the TM is required to halt within 100 steps for every
input. However, the number of input strings the TM must be emulated on is bounded,
because only the first 100 visited symbols are relevant to our analysis. Therefore, L2 is
computable.

• L3 is clearly computable, as it is possible to write a computer program (and hence a TM)
that decides whether a number is prime or not.

Observations
Note that L1, L2 and L4 can be rephrased as properties of TMs; however, such properties are
not semantic because they do not refer to the recognized language (respectively, “the TM halts”,
“the TM halts within 100 steps on all input strings”, “the TM halts within 100 steps on the empty
string”), therefore Rice’s theorem is never applicable.
On the same note, L3 does not refer to TMs having specific properties, but to numbers. There-
fore, Rice’s Theorem is not applicable. It would be applicable if L3 were the language of TMs
that decide prime numbers, not the language of prime numbers itself.

Exercise 2
See the course notes.

Observations
Remember that, unlike BPP and PP, the definition of RP is not symmetric: since RP ⊆ NP,
whenever x ̸∈ L, every computation must reject.



Exercise 3
Since log n = O(nc) (i.e., logarithms are dominated by polynomials), we know that NL ⊆
NPSPACE. But we know that (as a consequence of Savitch’s Theorem) NPSPACE = PSPACE,
hence the thesis.
As an alternative, observe that every computation of a NDTM N deciding a NL language
occupies at most c log n cells of the read/write tape (where n is the input size); therefore, it can
perform at most O(nc) steps (give or take some constants due to the number of states and to
the head positions). Therefore, we can sequentially emulate all the computations of N with
a DTM that uses the original logarithmic space plus a O(nc)-bit (i.e., polynomial) string that
keeps track of the current sequence of non-deterministic choices.


