
Computability and Computational Complexity, A.Y. 2018–2019

Written exam
Mauro Brunato

Monday, June 17, 2019

Exercise 1
Write down a 1-tape Turing Machine with alphabet Σ = { ,0,1} which, upon execution on
input x ∈ {0,1}∗ halts if and only if the number of ones and the number of zeroes in x have
the same parity (i.e., they are both even or both odd).
Assume that the input string is delimited by infinite blanks on both sides, and that the computa-
tion begins at the leftmost symbol of x.

Exercise 2
Let M represent a Turing Machine, let ⌊M⌋ be any reasonable encoding of M, and remember
that, in our notation, M(x) = ∞ means “M does not halt when executed on input x”. Consider
the following languages:

L1 = {⌊M⌋ | ∃xM(x) ̸= ∞} = {⌊M⌋ |M halts on some inputs}
L2 = {⌊M⌋ | ∀xM(x) ̸= ∞} = {⌊M⌋ |M halts on all inputs}
L3 = {⌊M⌋ | ∃xM(x) = ∞} = {⌊M⌋ |M doesn’t halt on some inputs}
L4 = {⌊M⌋ | ∀xM(x) = ∞} = {⌊M⌋ |M doesn’t halt on any input}

2.1) Provide examples of TMs M1, . . . ,M4 such that ⌊M1⌋ ∈ L1, . . . , ⌊M4⌋ ∈ L4.
2.2) Describe the set relationships between the four languages (i.e., which languages are subsets
of others, which are disjoint, which have a non-empty intersection).
Hint — For point 2.1, simple one- or two-state machines should suffice.

Exercise 3
Let L be a language, and let N be a non-deterministic Turing Machine that decides x ∈ L in
time O(|x|3 log |x|).
3.1) Suppose that, whenever x ∈ L, at least 15 computations of N (x) accept; what probabilistic
complexity classes does L belong to, and why?
3.2) Suppose that, whenever x ∈ L, at most 15 computations of N (x) do not accept; what
probabilistic complexity classes would L belong to, and why?
Hint — Consider the following classes: RP, coRP, ZPP, BPP, PP. Bonus points if you also
consider P and NP.

Solution traces

Exercise 1
Write down a 1-tape Turing Machine with alphabet Σ = { ,0,1} which, upon execution on
input x ∈ {0,1}∗ halts if and only if the number of ones and the number of zeroes in x have
the same parity (i.e., they are both even or both odd).
Assume that the input string is delimited by infinite blanks on both sides, and that the computa-
tion begins at the leftmost symbol of x.

Solution trace
The most straightforward way to remember the parity of the number of zeroes and ones is to
introduce 4 states:

• see is the state corresponding to an even number of zeroes and an even number of ones;

• seo is the state corresponding to an even number of zeroes and an odd number of ones;

• soe is the state corresponding to an odd number of zeroes and an even number of ones;

• soo is the state corresponding to an odd number of zeroes and an odd number of ones.

The machine starts in state see (no zeroes and no ones) and sweeps the input string until it finds
a blank, indicating the end of the input. If, once a blank has been observed, the two parities
are equal (i.e., the machine is in state see or soo), then it halts; otherwise it enters a new state in
which it runs forever, as per the specification:

0 1
see 0, right, soe 1, right, seo , right, HALT
seo 0, right, soo 1, right, see , right, sforever

soe 0, right, see 1, right, soo , right, HALT
soo 0, right, seo 1, right, soe , right, sforever

sforever 0, right, sforever 1, right, sforever , right, sforever

Observations
• There is a much simpler solution, obtained by collapsing the two states see and soo in

a single state, and by collapsing soe and seo in another state. This is equivalent to the
observation that the two parities are equal if and only if the input x has even length.

• Of course, any representation of the TM was fine: as a transition table, an automaton
graph. . .

• Unfortunately, many answers were undecipherable because of a lack of an explanation.

Exercise 2
Let M represent a Turing Machine, let ⌊M⌋ be any reasonable encoding of M, and remember
that, in our notation, M(x) = ∞ means “M does not halt when executed on input x”. Consider
the following languages:

L1 = {⌊M⌋ | ∃xM(x) ̸= ∞} = {⌊M⌋ |M halts on some inputs}
L2 = {⌊M⌋ | ∀xM(x) ̸= ∞} = {⌊M⌋ |M halts on all inputs}
L3 = {⌊M⌋ | ∃xM(x) = ∞} = {⌊M⌋ |M doesn’t halt on some inputs}
L4 = {⌊M⌋ | ∀xM(x) = ∞} = {⌊M⌋ |M doesn’t halt on any input}

2.1 — Provide examples of TMs M1, . . . ,M4 such that ⌊M1⌋ ∈ L1, . . . , ⌊M4⌋ ∈ L4.
2.2 — Describe the set relationships between the four languages (i.e., which languages are
subsets of others, which are disjoint, which have a non-empty intersection).

Answer trace
2.1 — The machine that immediately halts (s0 = HALT) is an example for L1 and L2. The
machine that never halts (e.g., always moving right and staying in state s0) is an example for L3

and L4.
2.2 — If a machine always halts, it clearly halts on some inputs; therefore, L2 ⊂ L1 (equality
is ruled out by the fact that there are machines that halt on some inputs and don’t on others:
L1 ∩ L3 ̸= ∅). With similar considerations, we can say that L4 ⊂ L3.
L2 is disjoint from both L3.
Also, observe that L2 = L1 \ L3 and L4 = L3 \ L1.
The relationship among the sets can be shown in the following diagram:

1L 3L

2L 4L

Observations
This exercise has little to do with computability; not understanding what is being asked means
a severe lack of logical bases. Sorry for the bluntness.

Exercise 3
Let L be a language, and let N be a non-deterministic Turing Machine that decides x ∈ L in
time O(|x|3 log |x|).
3.1 — Suppose that, whenever x ∈ L, at least 15 computations of N (x) accept; what proba-
bilistic complexity classes does L belong to, and why?
3.2 — Suppose that, whenever x ∈ L, at most 15 computations of N (x) do not accept; what
probabilistic complexity classes would L belong to, and why?

Answer trace
3.1 — Clearly, L ∈ NP, because a non-deterministic TM decides it in polynomial time, and
therefore L ∈ PP (but N must be tweaked in order to meet the definition). Observe that, if
x ∈ L, the guaranteed ratio of accepting computations (which is a constant 15) to the total
number tends to zero as the input size grows: the number of possible computations grows
exponentially with the computation time. Therefore, there is no ε > 0 such that

15

Number of computations
> ε;

this means that the existence of N alone does not guarantee that L belongs to any other proba-
bilistic class (they all require a finite, nonzero bound).
3.2 — Again, L ∈ NP for the same reason as above. This time, if x ∈ L, almost all computa-
tions accept: only a small, residual number (15 against an exponentially growing number) keep
rejecting valid inputs. Since a very large fraction of computations (almost 100%) accepts valid
inputs, and all invalid ones are rejected, the machine satisfies the definition of RP.

Observations
• Actually, in the case 3.2, L ∈ P; in fact, we just need to emulate 16 = 15+1 computations

of the NDTM (each being in polynomial time): if x ∈ L, in the worst case at least one
of the computations will accept, otherwise all of them will reject. As a consequence, L
belongs to all probabilistic classes that we defined.

• Saying “suppose that the total number of computations is 30, then the ratio is 1/2” doesn’t
make sense: as said above, the number of computations is unbounded, and grows very
quickly.

• O(n3 log n) is polynomial, since log n = O(n).

