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Chapter 1

Computability

1.1 Basic definitions and examples

In computer science, every problem instance can be represented by a finited sequence of symbols from
a finite alphabet, or equivalently as a natural number. Therefore, we can restrict our focus on functions
mapping natural numbers to natural numbers:

f : N→ N.

In particular, we are interested in functions for which the answer is “yes” or “no”, which can be
modeled as

f : N→ {0, 1};

in such case, we talk about a decision problem.
Examples:

• Given a natural number n, is n prime?

• Given a graph, what is the maximum degree of its nodes?

• From a customer database, select the customers that are more than fifty years old.

• Given a set of pieces of furniture and a set of trucks, can we accommodate all the furniture in
the trucks?

As long as the function’s domain and codomain are finite, they can be represented as sequences of
symbols, hence of bits, therefore as integer numbers (although some representations make more sense
than others); observe that some problems among those listed are decision problems, others aren’t.

Decision functions and sets

There is a one-to-one correspondence between decision functions on the natural numbers and subsets
of natural numbers. Given f : N→ {0, 1}, its obvious set counterpart is the subset of natural numbers
for which the function answers 1:

Sf = {n ∈ N : f(n) = 1}.

Conversely, given a natural number subset S ⊆ N, we can always define the function that decides over
elements of the set:

fS =

{
1 if n ∈ S
0 if n 6∈ S.
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Given a function, or equivalently a set, we say that it is computable1 (or decidable, or recursive)
if and only if a procedure can be described to compute the function’s outcome in a finite number of
steps. Observe that, in order for this definition to make sense, we need to define what an acceptable
“procedure” is; for the time being, let us intuitively consider any computer algorithm.

Examples of computable functions and sets are the following:

• the set of even numbers;

• a function that decides whether a number is prime or not;

• any finite or cofinite2 set, and any function that decides on them;

• any function studied in a basic Algorithms course (sorting, hashing, spanning trees on graphs. . . ).

1.1.1 A possibly non-recursive set

Collatz numbers

Given n ∈ N \ {0}, let the Collatz sequence starting from n be defined as follows:

a1 = n

ai+1 =

{
ai/2 if ai is even

3ai + 1 if ai is odd,
i = 1, 2, . . .

In other words, starting from n, we repeatedly halve it while it is even, and multiply it by 3 and add
1 if it is odd.

The Collatz conjecture3 states that every Collatz sequence eventually reaches the value 1. While
most mathematicians believe it to be true, nobody has been able to prove it.

Suppose that we are asked the following question:

“Given n ∈ N \ {0}, does the Collatz sequence starting from n reach 1?”

If the answer is “yes,” let us call n a Collatz number. Let f : N \ {0} → {0, 1} be the corresponding
decision function:

f(n) =

{
1 if n is a Collatz number

0 if n is not a Collatz number,
n = 1, 2, . . .

Then the Collatz conjecture simply states that all positive integers are Collatz numbers or, equivalently,
that f(n) = 1 on its whole domain.

Decidability of the Collatz property

Let us consider writing a function, in any programming language, to answer the above question, i.e., a
function that returns 1 if and only if its argument is a Collatz number. Figure1.1 details two possible
ways to do it, and both have problems: the rightmost one requires us to have faith in an unproven
mathematical conjecture; the left one only halts when the answer is 1 (the final return is never
reached).

In more formal terms, we are admitting that we are not able to prove that the Collatz property
is decidable (i.e., that there is a computer program that always terminates with the correct answer4).
However, we have provided a procedure that terminates with the correct answer when the answer is

1https://en.wikipedia.org/wiki/Recursive_set
2A set is cofinite when its complement is finite.
3https://en.wikipedia.org/wiki/Collatz_conjecture
4To the best of my knowledge, which isn’t much.
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function collatz (n ∈ N \ {0}) ∈ {0, 1}
repeat

if n = 1 then return 1
if n is even

then n ← n/2
else n ← 3n+ 1

return 0

function collatz (n ∈ N \ {0}) ∈ {0, 1}
return 1

Figure 1.1: Left: the only way I know to decide whether n is a Collatz number isn’t guaranteed to
work. Right: a much better way, but it is correct if and only if the conjecture is true.

“yes” (the function is not total, in the sense that it doesn’t always provide an answer). We call such
set recursively enumerable5 (or RE, in short).

Having a procedure that only terminates when the answer is “yes” maight not seem much, but it
actually allows us to enumerate all numbers having the property. The function in Fig. 1.2 shows the
basic trick to enumerate a potentially non-recursive set, applied to the Collatz sequence: the diagonal
method6. Rather than performing the whole decision function on a number at a time (which would
expose us to the risk of an endless loop), we start by executing the first step of the decision function
for the first input (n = 1), then we perform the second step for n = 1 and the first step of n = 2; at
the i-th iteration, we perform the i-th step of the first input, the (i− 1)-th for the second, down to the
first step for the i-th input. This way, every Collatz number will eventually hit 1 and be printed out.

The näıf approach of following the table rows is not guaranteed to work, since it would loop
indefinitely, should a non-Collatz number ever exist.

Observe that the procedure does not print out the numbers in increasing order.

1.2 A computational model: the Turing machine

Among the many formal definition of computation proposed since the 1930s, the Turing Machine (TM
for short) is by far the most similar to our intuitive notion. A Turing Machine7 is defined by:

• a finite alphabet Σ, with a distinguished “default” symbol (e.g., “ ” or “0”) whose symbols are
to be read and written on an infinitely extended tape divided into cells;

• a finite set of states Q, with a distinguished initial state and one or more distinguished halting
states;

• a set of rules R, described by a (possibly partial) function that associates to a pair of symbol
and state a new pair of symbol and state plus a direction:

R : Q× Σ→ Σ×Q× {L,R}.

Initially, all cells contain the default symbol, with the exception of a finite number; the non-blank
portion of the tape represent the input of the TM. The machine also maintains a current position on
the tape. The machine has an initial state q0 ∈ Q. At every step, if the machine is in state q ∈ Q, and
the symbol σ ∈ Σ appears in the current position of the tape, the machine applies the rule set R to
(q, σ):

(σ′, q′, d) = R(q, σ).

The machine writes the symbol σ′ on the current tape cell, enters state q′, and moves the current
position by one cell in direction d. If the machine enters one of the distinguished halting states, then

5https://en.wikipedia.org/wiki/Recursively_enumerable_set
6See https://comp3.eu/collatz.py for a Python version.
7https://en.wikipedia.org/wiki/Turing_machine
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1. procedure enumerate collatz

2. queue ← []
3. for n ← 1 ... ∞ Repeat for all numbers
4. queuen ← n Add n to queue with itself as starting value
5. for i ← 1 ... n: Iterate on all numbers up to n
6. if queuei = 1 i is Collatz, print and forget it
7. print i
8. delete queuei deleted means “Already taken care of”
9. else if queuei is not deleted if current number wasn’t printed and forgotten yet
10. if queuei is even Advance i-th sequence in the queue by one step
11. then queuei ← queuei / 2
12. else queuei ← 3 · queuei + 1
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the computation ends. At this point, the content of the (non-blank portion of) the tape represents the
computation’s output.

Observe that the input size for a TM is unambiguously defined: the size of the portion of tape that
contains non-default symbols. Also the “execution time” is well understood: it is the number of steps
before halting. Therefore, when we say that the computational complexity of a TM for inputs of size n
is T (n) then we mean that T (n) is the worst-case number of steps that a TM performs before halting
when the input has size n.

1.2.1 Examples

In order to experiment with Turing machines, many web-based simulators are available. The two top
search results for “turing machine demo” are

• http://morphett.info/turing/turing.html

• https://turingmachinesimulator.com/.

Students are invited to read the simplest examples and to try implementing a TM for some simple
problem (e.g., some arithmetic or logical operation on binary or unary numbers). Also, see the examples
provided in the course web page.

1.2.2 Computational power of the Turing Machine

With reference to more standard computational models, such as the Von Neumann architecture of all
modern computers, the TM seems very limited; for instance, it lacks any random-access capability.
The next part of this course is precisely meant to convince ourselves that a TM is exactly as powerful as
any other (theoretical) computational device. To this aim, let us discuss some possible generalizations.

Multiple-tape Turing machines

A k-tape Turing machine is a straightforward generalization of the basic model, with the following
variations:

• the machine has k unlimited tapes, each with an independent current position;

• the rule set of the machine takes into account k symbols (one for each tape, from the current
position) both in reading and in writing, and k movement directions (each current position is
independent), with the additional provision of a “stay” direction S in which the position does
not move:

R : Q× Σk → Σk ×Q× {L,R, S}k.

Multiple-tape TMs are obviously more practical for many problems. For example, try following the
execution of the binary addition algorithms below:

• 1-tape addition from http://morphett.info/turing/turing.html: select “Load an example
program/Binary addition”;

• 3-tape addition from https://turingmachinesimulator.com/: select “Examples/3 tapes/Binary
addition”.

However, it turns out that any k-tape Turing machine can be “simulated” by a 1-tape TM, in the
sense that it is possible to represent a k-tape TM on one tape, and to create a set of 1-tape rules that
simulates the evolution of the k-tape TM. Of course, the 1-tape machine is much slower, as it needs
to repeatedly scan its tape back and forth just to simulate a single step of the k-tape one.
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Theorem 1 (k-tape Turing machine emulation). If a k-tape Turing machine M takes time T (n) on
inputs of time n, then it is possible to program a 1-tape Turing machine M′ that simulates it (i.e.,
essentially performs the same computation) in time O(T (n)2).

Proof. See Arora-Barak, Claim 1.9 in the public draft.
Basically, the k tapes ofM are encoded on the single tape ofM′ by alternating the cell contents of

each tape; in order to remember the “current position” on each tape, every symbol is complemented
by a different version (e.g., a “hatted” symbol) to be used to mark the current position. To emulate a
step ofM, the whole tape ofM′ is first scanned in order to find the k symbols in the current positions;
then, a second scan is used to replace each symbol in the current position with the new symbol; then
a third scan performs an update of the current positions.

Since M halts in T (n) steps, no more that T (n) cells of the tapes will ever be visited; therefore,
every scan performed by M′ will take at most kT (n) steps. Given some more details, cleanup tasks
and so on, the simulation of a single step of M will take at most 5kT (n) steps by M′, therefore the
whole simulation takes 5kT (n)2 steps. Since 5k is constant wrt the input size n, the result follows.

Size of the alphabet

The number of symbols that can be written on a tape (the size of the alphabet Σ) can make some
tasks easier; for instance, in order to deal with binary numbers a three-symbol alphabet (“0”, “1”,
and the blank as a separator) is convenient, while working on words is easier if the whole alphabet is
available.

While a 1-sized alphabet Σ = { } is clearly unfit for a TM (no way to store information on the
tape), a 2-symbol alphabel is enough to simulate any TM:

Theorem 2 (Emulation by a two-symbol Turing Machine). If a Turing machine M with a k-symbol
alphabet Σ takes time T (n) on an input of size n, then it can be simulated by a Turing machine M′
with a 2-symbol alphabet Σ′ = {0, 1} in time O(T (n)) (i.e., with a linear slowdown).

Proof. See Arora-Barak, claim 1.8 in the public draft, where for convenience machine M′ is assumed
to have 4 symbols and the tape(s) extend only in one direction.

Every symbol from alphabet Σ can be encoded by dlog2 ke binary digits from Σ′. Every step of
machineM will be simulated byM′ by reading dlog2 ke cells in order to reconstruct the current symbol
inM; the symbol being reconstructed bit by bit is stored in the machine state (therefore,M′ requires
many more states that M). This scan is followed by a new scan to replace the encoding with the
new symbol (again, all information needed by M′ will be “stored” in its state), and a third (possibly
longer) scan to place the current position to the left or right encoding. Therefore, a step of M will
require less than 4dlog2 ke steps of M′, and the total simulation time will be

T ′(n) ≤ 4dlog2 keT (n).

1.2.3 Universal Turing machines

The main drawback of TMs, as described up to now, with respect to our modern understanding of
computational systems, is that each serves one specific purpose, encoded in its rule set: a machine to
add numbers, one to multiply, and so on.

However, it is easy to see that a TM can be represented by a finite string in a finite alphabet:
each transition rule can be seen as a quintuplet, each from a finite set, and the set of rules is finite.
Therefore, it is possible to envision a TM U that takes another TM M as input on its tape, properly
encoded, together with an input string s for M, and simulates M step by step on input s. Such
machine is called a Universal Turing machine (UTM).

One such machine, using a 16 symbol encoding and a single tape, is described in
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https://www.dropbox.com/sh/u7jsxm232giwown/AADTRNqjKBIe_QZGyicoZWjYa/utm.pdf

and can be seen in action at the aforementioned link http://morphett.info/turing/turing.html,
clicking “Load an example program / Universal Turing machine.”

Simulating other computational devices

Now we know that TMs are powerful enough to, in a sense, “simulate themselves.” We can also convince
ourselves quite easily that they can emulate a simple CPU/RAM architecture: just replace random
access memory with sequential search on a tape (tremendous slowdown, but we are not concerned by
it now), the CPU’s internal registers can be stored in separate tapes, and every opcode of the CPU
corresponds to a separate set of states of the machine. Operations such as “load memory to a register,”
“perform an arithmetic or logical operation between registers,” “conditionally junp to memory” and
so on can be emulated.

1.2.4 The Church-Turing thesis

We should be convinced, by now, that TMs are powerful enough to be a fair computational model, at
least on par with any other reasonable definition. We formalize this idea into a sort of “postulate,”
i.e., an assertion that we will assume to be true for the rest of this course.

Postulate 1 (Church-Turing thesis). Turing machines are at least as powerful as every physically
realizable model of computation.

This thesis allows us to extend every the validity negative result about TMs to every physical
computational device.

1.3 Uncomputable functions

It is easy to understand that, even if we restrict our interest to decision functions, almost all functions
are not computable by a TM. In fact, as the following Lemmata 1 and 2 show, there are simply too
many functions to be able to define a TM for each of them.

Lemma 1. The set of decision functions f : N → {0, 1} (or, equivalently, f : Σ∗ → {0, 1}), is
uncountable.

Proof. By contradiction, suppose that a complete mapping exists from the naturals to the set of
decision functions; i.e., there is a mapping n 7→ fn that enumerates all functions. Define function
f̂(n) = 1 − fn(n). By definition, function f̂ differs from fn on the value it is assigned for n (if

fn(n) = 0 then f̂(n) = 1− fn(n) = 1− 0 = 0, and vice versa). Therefore, contrary to the assumption,

the enumeation is not complete because it excluded function f̂ .

Lemma 1 is an example of diagonal argument, introduced by Cantor in order to prove the uncount-
ability of real numbers: focus on the “diagonal” values (in our case fn(n), by using the same number
as function index and as argument), and make a new object that systematically differs from all that
are listed.

Lemma 2. Given a finite alphabet Σ, the number of TMs on that alphabet is countable.

Proof. As shown in the Universal TM discussion, every TM can be encoded in some appropriate
alphabet. As shown by Theorem 2, every alphabet with at least two symbols can emulate and be
emulated by every other alphabet. Therefore, it is possible to define a representation of any TM in
any alphabet.

We know that strings can be enumerated: first we count the only string in Σ0, then the strings
in Σ1, then those in Σ2 (e.g., in lexicographic order), and so on. Since every string s ∈ Σ∗ is finite
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(s ∈ Σ|s|), sooner or later it will be enumerated. Therefore there is a mapping N → Σ∗, i.e., Σ∗ is
countable.

Since TMs can be mapped on a subset of Σ∗ (those strings that define TMs according to the chosen
encoding), and are still infinite, it follows that TMs are countable.

Therefore, whatever way we choose to enumerate TMs and to associate them with decision func-
tions, we will inevitably leave out some functions. Hence, given that TMs are our definition of com-
puting,

Corollary 1. There are uncomputable decision functions.

1.3.1 Finding an uncomputable function

Let us introduce a little more notation. As already defined, the alphabet Σ contains a distinguished,
“default” symbol, which we assume to be “ ”. Before the computation starts, only a finite number of
cell tapes have non-blank symbols. Let us define as “input” the smallest, contiguous set of tape cells
that contains all non-blank symbols.

A Turing machine transforms an input string into an output string (the smallest contiguous set
of tape cells that contain all non-blank symbols at the end of the computation), but it might never
terminate. In other words, if we see a TM machine as a function from Σ∗ to Σ∗ it might not be a total
function.

As an alternative, we may introduce a new value, ∞, as the “value” of a non-terminating com-
putation; given a Turing machine M, if its compuattion on input s does not terminate we will write
M(s) =∞.

While TM encodings have a precise syntax, so that not all strings in Σ∗ are syntactically valid
encodings of some TM, we can just accept the convention that any such invalid string encodes the
TM that immediately halts (think of s as a program, executed by a UTM that immediately stops if
there is a syntax error). This way, all strings can be seen to encode a TM, and most string just encode
the “identity function” (a machine that halts immediately leaves its input string unchanged). Let us
therefore call Ms the TM whose encoding is string s, or the machine that immediately terminates if
s is not a valid encoding.

With this convention in mind, we can design a function whose outcome differs from that of any
TM. We employ a diagonal technique akin to the proof of Lemma 1: for any string α ∈ Σ∗, we define
our function to differ from the output of the TM encoded by α on input α itself.

Theorem 3. Given an alphabet Σ and a encoding α 7→ Mα of TMs in that alphabet, the function

UC(α) =

{
0 if Mα(α) = 1

1 otherwise
∀α ∈ Σ∗

is uncomputable.

Proof. Let M be any TM, and let m ∈ Σ∗ be its encoding (i.e., M = Mm). By definition, UC(m)
differs fromM(m): the former outputs one if and only if the latter outputs anything else (or does not
terminate).
See also Arora-Barak, theorem 1.16 in the public draft.

What is the problem that prevents us from computing UC? While the definition is quite straight-
forward, being able to emulate the machine Mα on input α is not enough to always decide the value
of UC(α). We need to take into account also the fact that the emulation might never terminate. This
allows us to prove, as a corollary of the preceding theorem, that there is no procedure that always
determines whether a machine will terminate on a given input.
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Theorem 4 (Halting problem). Given an alphabet Σ and a encoding α 7→ Mα of TMs in that alphabet,
the function

HALT (s, t) =

{
0 if Ms(t) =∞
1 otherwise

∀(s, t) ∈ Σ∗ × Σ∗

(i.e., which returns 1 if and only if machine Ms halts on input t) is uncomputable.

Proof. Let’s proceed by contradiction. Suppose that we have a machineH which computes HALT (s, t)
(i.e., when run on a tape containing a string s encoding a TM and a string t, always halts returning 1
if machine Ms would halt when run on input t, and returning 0 otherwise). Then we could use H to
compute function UC.
For convenience, let us compute UC using a machine with two tapes. The first tape is read-only and
contains the input string α ∈ Σ∗, while the second will be used as a work (and output) tape. To
compute UC, the machine will perform the following steps:

• Create two copies of the input string α onto the work tape, separated by a blank (we know we
can do this because we can actually write the machine);

• Execute the machine H (which exists by hypothesis) on the work tape, therefore calculating
whether the computation Mα(α) would terminate or not. Two outcomes are possible:

– If the output ofH is zero, then we know that the computation ofMα(α) wouldn’t terminate,
therefore, by definition of function UC, we can output 1 and terminate.

– If, on the other hand, the output of H is one, then we know for sure that the computation
Mα(α) would terminate, and we can emulate it with a UTM U (which we know to exist)
and then “inverting” the result à la UC, by executing the following steps:

∗ As in the first step, create two copies of the input string α onto the work tape, separated
by a blank;

∗ Execute the UTM U on the work tape, thereby emulating the computation Mα(α);

∗ At the end, if the output of the emulation was 1, then replace it by a 0; if it was
anything other than 1, replace it with 1.

This machine would be able to compute UC by simply applying its definition, but we know that UC
is not computable by a TM; all steps, apart from H, are already known and computable. We must
conclude that H cannot exist.
See also Arora-Barak, theorem 1.17 in the public draft.

This proof employs a very common technique of CS, called reduction: in order to prove the im-
possibility of HALT , we “reduce” the computation of UC to that of HALT ; since we know that the
former is impossible, we must conclude that the latter is too.

The Haliting Problem for machines without an input

Consider the special case of machines that do not work on an input string; i.e., the class of TMs that
are executed on a completely blank tape. Asking whether a computation without input will eventually
halt might seem a simpler question, because we somehow restrict the number of machines that we are
considering.

Let us define the following specialized halting function:

HALT ′(s) = HALT (s, ε) =

{
0 if Ms(ε) =∞
1 otherwise

∀s ∈ Σ∗.

It turna out that if we weer able to compute HALT ′ then we could also compute HALT :

13



Theorem 5. HALT ′ is not computable.

Proof. By contradiction, suppose that there is a machine H′ that computes HALT ′. Such machine
would be executed on a string s on the tape, and would return 1 if the machine encoded by s would
halt when run on an empty tape, 0 otherwise.
Now, suppose that we are asked to compute HALT (s, t) for a non-empty input string t. We can
transform the computation Ms(t) on a computation Ms′(ε) on an empty tape where s′ contains the
whole encoding s, but prepended with a number of states that write the string t on the tape. In other
words, we transform a computation on a generic input into a computation on an empty tape that
writes the desired input before proceeding.
After modifying the string s into s′ on tape, we can run H′ on it. The answer of H′ is precisely
HALT (s, t), which would therefore be computable.

Again, the result was obtained by reducing a known impossible problem, HALT to the newly
introduced one, HALT ′.

Consequences of the Halting Problem incomputability

If HALT were computable, we would be able to settle any mathematical question that can be disproved
by a counterexample (on a discrete set), such as the Collatz conjecture, Goldbach’s conjecture8, the
non-existence of odd perfect numbers9. . . We would just need to write a machine that systematically
search for one such counterexample and halts as soon as it finds one: by feeding this machine as an
input to H, we would know whether a counterexample exists at all or not.

More generally, for every proposition P in Mathematical logic we would know whether it is provable
or not: just define a machine that, starting from pre-encoded axioms, systematically generates all their
consequences (theorems) and halts whenever it generates P . Machine H would tell us whether P is
ever going to be generated or not.

Note that, in all cases described above, we would only receive a “yes/no” answer, not an actual
counterexample or a proof.

1.3.2 Recursive enumerability of halting computations

Although HALT is not computable, it is clearly recursively enumerable. In fact, we can just take a
UTM and modify it to erase the tape and write “1” whenever the emulated machine ends, and we
would have a partial function that always accepts (i.e., returns 1) on terminating computations.

It is also possible to output all (s, t) ∈ Σ∗×Σ∗ pairs for whichMs(t) halts by employing a diagonal
method similar to the one used in Fig. 1.210.

Function HALT is our first example of R.E. function that is provably not recursive.
Observe that, unlike recursivity, R.E. does not treat the “yes” and “no” answer in a symmetric

way. We can give the following:

Definition 1. A decision function f : Σ∗ → {0, 1} is co-R.E. if it admits a TM M such that M(s)
halts with output 0 if and only if f(s) = 0.

In other words, co-R.E. functions are those for which it is possible to compute a “no” answer, while
the computation might not terminate if the answer is “yes”. Clearly, if f is R.E., then 1− f is co-R.E.

Theorem 6. A decision function f : Σ∗ → {0, 1} is recursive if and only if it is both R.E. and co-R.E.

8Every even number (larger than 2) can be expressed as the sum of two primes, see https://en.wikipedia.org/

wiki/Goldbach%27s_conjecture
9https://en.wikipedia.org/wiki/Perfect_number

10See the figure at https://en.wikipedia.org/wiki/Recursively_enumerable_set#Examples
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Proof. Let us prove the “only if” part first. If f is recursive, then there is a TMMf that computes it.
But Mf clearly satisfies both the R.E. definition (Mf (s) halts with output 1 if and only if f(s) = 1)
and the co-R.E. definition (Mf (s) halts with output 0 if and only if f(s) = 0).
About the “if” part, if f is R.E., then there is a TM M1 such that M1(s) halts with output 1 iff
f(s) = 1; since f is also co-R.E., then there is also a TM M0 such that M1(s) halts with output 0
iff f(s) = 0. Therefore, a machine that alternates one step of the execution of M1 with one step of
M0, halting when one of the two machines halts and returning its output, will eventually terminate
(because, whatever the value of f , at least one of the two machines is going to eventually halt) and
precisely decides f .

Observe that, as already pointed out, any definition given on decision functions with domain Σ∗

also works on domain N (and on any other discrete domain), and can be naturally extended on subsets
of strings or natural numbers. We can therefore define a set as recursive, recursively enumerable, or
co-recursively enumerable.

1.3.3 Another uncomputable function: the Busy Beaver game

Since we might be unable to tell at all whether a specific TM will halt, the question arises of how
complex can machine’s output be for a given number of states.

Definition 2 (The Busy Beaver game). Among all TMs on alphabet {0, 1} and with n = |Q| states
(not counting the halting one) that halt when run on an empty (i.e., all-zero) tape:

• let Σ(n) be the largest number of (not necesssarily consecutive) ones left by any machine upon
halting;

• let S(n) be the largest number of steps performed by any such machine before halting.

Function Σ(n) is known as the busy beaver function for n states, and the machine that achieves it
is called the Busy Beaver for n states.

Both functions grow very rapidly with n, and their values are only known for n ≤ 4. The current
Busy Beaver candidate with n = 5 states writes more than 4K ones before halting after more than
47M steps.

Theorem 7. The function S(n) is not computable.

Proof. Suppose that S(n) is computable. Then, we could create a TM to compute HALT ′ (the variant
with empty input) on a machine encoded in string s as follows:

• Count the number n of states of Ms;

• compute ` = S(n);

• emulate Ms for ` steps;

– if the emulation halts before, then Ms clearly halts: write 1 on the tape and halt;

– otherwise, since Ms has been running longer than the longest-running machine with n
states, it is bound to run forever: write 0 on the tape and halt.

The next result is even stronger. Given two functions f, g : N → N, we say that f “eventually
outgrows” g, written f >E g, if f(n) ≥ g(n) for a sufficiently large value of n:

f >E g ⇔ ∃N : ∀n > Nf(n) ≥ g(n).

Theorem 8. The function Σ(n) eventually outgrows any computable function.
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Proof. Let f : N→ N be computable. Let us define the following function:

F (n) =

n∑
i=0

[
f(i) + i2

]
.

By definition, F clearly has the following properties:

F (n) ≥ f(n) ∀n ∈ N, (1.1)

F (n) ≥ n2 ∀n ∈ N, (1.2)

F (n+ 1) > F (n) ∀n ∈ N (1.3)

the latter because F (n + 1) is equal to F (n) plus a strictly positive term. Moreover, since f is
computable, F is computable too. Suppose that MF is a TM on alphabet {0, 1} that, when positioned
on the rightmost symbol of an input string of x ones and executed, outputs a string of F (x) ones (i.e.,
computes the function x 7→ F (x) in unary representation) and halts below the rightmost one. Let C
be the number of states of MF .

Given an arbitrary integer x ∈ N, we can define the following machine M running on an initially
empty tape (i.e., a tape filled with zeroes):

• Write x ones on the tape and stop at the rightmost one (i.e., the unary representation of x: it
can be done with x states, see Exercise 3 at page 45);

• Execute MF on the tape (therefore computing F (x) with C states);

• Execute MF again on the tape (therefore computing F (F (x)) with C more states).

The machineM works on alphabet {0, 1}, starts with an empty tape, ends with F (F (x)) ones written
on it and has x+2C states; therefore it is a busy beaver candidate, and the (x+2C)-state busy beaver
must perform at least as well:

Σ(x+ 2C) ≥ F (F (x)). (1.4)

Now,
F (x) ≥ x2>E x+ 2C;

the first inequality comes from (1.2), while the second stems from the fact that x2 eventually dominates
any linear function of x. By applying F to both the left- and right-hand sides, which preserves the
inequality sign because of (1.3), we get

F (F (x))>E F (x+ 2C). (1.5)

By concatenating (1.4), (1.5) and (1.1), we get

Σ(x+ 2C) ≥ F (F (x))>E F (x+ 2C) ≥ f(x+ 2C).

Finally, by replaxing n = x+ 2C, we obtain

Σ(n)>E f(n).

This proof is based on the original one by Rado (1962)11.

11See for instance:
http://computation4cognitivescientists.weebly.com/uploads/6/2/8/3/6283774/rado-on_non-computable_

functions.pdf
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1.3.4 More definitions

A few more definitions, for brevity:

• Given an alphabet Σ, a set of strings S ⊆ Σ∗ is also called a language.

• If language S is recursively enumerable, i.e. there is a TM M such that M(s) = 1 ⇔ s ∈ S,
then we say that M accepts S (or that it “recognizes” it).

• Given a TMM, the language recognized by it (i.e., the set of all inputs that are accepted by the
machine) is represented by L(M).

• If language S is recursive, i.e. there is a TM M that accepts it and always halts, then we say
that M decides S.

1.3.5 Rice’s Theorem

Among all questions that we may ask about a Turing machine M, some of them have a syntactic
nature, i.e., they refer to its actual implementation: “does M halt within 50 steps?”, “Does M ever
reach state q?”, “Does M ever print symbol σ on the tape?”. . .

Other questions are of a semantic type, i.e., they refer to the language accepted by M, with
no regards about M’s behavior: “does M only accept even-length strings?”, “Does M accept any
string?”, “Does M accept at least 100 different strings?”. . .

Definition 3. A property of a TM is a mapping P from TMs to {0, 1}, and we say that M has
property P when P (M) = 1.

Definition 4. A property is semantic if its value is shared by all TMs recognizing the same language:
if L(M) = L(M′), then P (M) = P (M′).

By extension, we can say that a language S has a property P if the machine that recognizes S has.
Finally, we define a property as trivial if all TMs have it, or if no TM has it. A property is non-trivial
if there is at least one machine having it, and one not having it.

The two trivial properties (the one possessed by all TMs and the one posssessed by none) are easy
to decide, respectively by the machine that always accepts and by the one that always rejects. On the
other hand:

Theorem 9 (Rice’s Theorem). All non-trivial semantic properties of TMs are undecidable.

Proof. As usual, let’s work by contradiction via reduction from the Halting Problem.
Suppose that a non-trivial semantic property P is decidable; this means that there is a TM MP that
can be run on the encoding of any TM M and returns 1 if M has property P , 0 otherwise.
Let us also assume that the empty language ∅ does not have the property P (otherwise we can work
on the complementary property), and that the Turing machine N has the property P (we can always
find N because P is not trivial).
Given the strings s, t ∈ Σ∗, we can then check whether Ms(t) halts by building the following auxiliary
TM N ′ that, on input u, works as follows:

• move the input y onto an auxiliary tape for later use, and replace it with t;

• execute Ms on input t;

• when the simulation halts (which, as we know, might not happen), restore the original input u
on the tape by copying it back from the auxiliary tape;

• run N on the original input u.
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The machineN ′ we just defined accepts the same language asN ifMs(t) halts, otherwise it runs forever,
therefore accepting the empty language. Therefore, running our hypothetical decision procedure MP

on machine N ′ we obtain “yes” if Ms(t) halts (since in this case L(N ) = L(N ′)) ,and “no” if Ms(t)
doesn’t halt (and thus the empty language, which doesn’t have the property P , is recognized).

Observe that we simply use N , which has the property, as a sort of Trojan horse for computation
Ms(t). See also the Wikipedia entry for Rice’s Theorem12.

12https://en.wikipedia.org/wiki/Rice%27s_theorem
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Chapter 2

Complexity classes: P and NP

From now on, we will be only dealing with computable functions; the algorithms that we will analize
will always terminate, and our main concern will be about the amount of resources (time, space)
required to compute them.

2.1 Definitions

When discussing complexity, we are mainly interested in the relationship between the size of the input
and the execution “time” of an algorithm executed by a Turing machine. We still refer to TMs because
both input size and execution time can be defined unambiguously in that model.

Input size

By “size” of the input, we mean the number of symbols used to encode it in the machine’s tape. Since
we are only concerned in asymptotic relationships, the particular alphabet used by a machine is of no
concern, and we may as well just consider machines with alphabet Σ = {0, 1}.
We require that the input data are encoded in a reasonable way. For instance, numbers may be
represented in base-2 notation (although the precise base does not matter when doing asymptotic
analysis), so that the size of the representation r2(n) of integer n in base 2 is logarithmic with respect
to its value:

|r2(n)| = O(log n).

In this sense, unary representations (representing n by a string of n consecutive 1’s) is not to be
considered reasonable because its size is exponential with respect to the base-2 notation.

Execution time

We dub “execution time,” or simply “time,” the number of steps required by a TM to get to a halting
state. Let M be a TM that always halts. We can define the “time” function

tM : Σ∗ → N
x 7→ # of steps before M halts on input x

that maps every input string x onto the number of steps thatM performs upon input x before halting.
M always halts, so it is a well-defined function. Since the number of strings of a given size n is finite,
we can also define (and actually compute, if needed) the following “worst-case” time for inputs of size
n:

TM : N → N
n 7→ max{tM(x) : x ∈ Σn},
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i.e., TM(n) is the longest time that M takes before halting on an input of size n.

2.2 Polynomial languages

Let us now focus on decision problems.

Definition 5. Let f : N→ N be any computable function. We say that a language L ⊆ Σ∗ is of class
DTIME(f), and write L ∈ DTIME(f), if there is a TM M that decides L and its worst-case time, as
a function of input size, is dominated by f :

L ∈ DTIME(f) ⇔ ∃M : L(M) = L ∧ TM = O(f).

In other words, DTIME(f) is the class of all languages that can be decided by some TM in time
eventually bounded by function c · f , where c is constant.
Saying L ∈ DTIME(f) means that there is a machine M, a constant c ∈ N and an input size n0 ∈ N
such that, for every input x with size larger than n0, M decides x ∈ L in at most c · f(|x|) steps.

Languages that can be decided in a time that is polynomial with respect to the input size are very
important, so we give a short name to their class:

Definition 6.

P =

∞⋃
k=0

DTIME(nk).

In other words, we say that a language L ∈ Σ∗ is polynomial-time, and write L ∈ P, if there are a
machine M and a polynomial p(n) such that for every input string x

x ∈ L ⇔ M(x) = 1 ∧ tM(x) ≤ p(|x|). (2.1)

2.2.1 Examples

Here are some examples of polynomial-time languages.

CONNECTED — Given an encoding of graph G (e.g., the number of nodes followed by an adjacency
matrix or list), G ∈ CONNECTED if and only if there is a path in G between every pair of nodes.

PRIME — Given a base-2 representation of a natural number N , we say that N ∈ PRIME if and
only if N is, of course, prime.
Observe that the naive algorithm “divide by all integers from 2 to b

√
Nc” is not polynomial with

respect to the size of the input string. In fact, the input size is n = O(logN) (the number of
bits used to represent a number is logarithmic with respect to its magnitude), therefore the naive
algorithm would take b

√
Nc − 1 = O(2n/2) divisions in the worst case, which grows faster than

any polynomial1.
Anyway, it has recently been shown2 that PRIME ∈ P.

(Counter?)-examples

On the other hand, we do not know of any polynomial-time algorithm for the following languages:

SATISFIABILITY or SAT — (see also Sec. 2.4.1) Given a Boolean expression f(x1, . . . , xn) (usu-
ally in conjunctive normal form, CNF3) involving n variables, is there a truth assignment to the
variables that satisfies (i.e., makes true) the formula4?

1An algorithm that is polynomial with respect to the magnitude of the numbers instead than the size of their
representation is said to be “pseudo-polynomial.” In fact, the naive primality test would be polynomial if we chose to
represent N in unary notation (N consecutive 1’s).

2https://en.wikipedia.org/wiki/Primality_test#Fast_deterministic_tests
3https://en.wikipedia.org/wiki/Conjunctive_normal_form
4https://en.wikipedia.org/wiki/Boolean_satisfiability_problem
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INDEPENDENT SET or INDSET — Given an encoding of graph G and a number k, does G
contain k nodes that are not connected to each other5?

TRAVELING SALESMAN PROBLEM or TSP — Given an encoding of a complete weighted
graph G (i.e., all pairs of nodes are connected, and pair i, j is assigned a “weight” wij) and a
“budget” k, is there an order of visit (permutation) σ of all nodes such that(

n−1∑
i=1

wσiσi+1

)
+ wσnσ1

≤ k, (2.2)

i.e., the total weight along the corresponding closed path in that order of visit (also considering
return to the starting node) is within budget6?

However, we have no proof that these languages (and many others) are not in P. In the following
section, we will try to characterize these languages.

2.3 NP languages

While the three languages listed above (SAT, INDSET, TSP) cannot be decided by any known poly-
nomial algorithm, they share a common property: if a string is in the language, there is an “easily”
(polynomially) verifiable proof of it:

• If f(x1, . . . , xn) ∈ SAT (i.e., boolean formula f is satisfiable), then there is a truth assignment to
the variables x1, . . . , xn that satisfies it. If we were given this truth assignment, we could easily
check that, indeed, f ∈ SAT. Note that the truth assignment consists of n truth values (bits)
and is therefore shorter than the encoding of f (which contains a whole boolean expression on n
variables), and that computing a Boolean formula can be reduced to a finite number of scans.

• If G ∈ INDSET, then there is a list of k independent nodes; given that list, we could easily
verify that G does not contain any edge between them. The list contains k integers from 1 to
the number of nodes in G (which is polynomial with respect to the size of G’s representation)
and requires a presumably quadratic or cubic time to be checked.

• If G ∈ TSP, then there is a permutation of the nodes in G, i.e., a list of nodes. Given that list,
we can easily sum the weights as in (2.2) and check that the inequality holds.

In other words, if we are provided a certificate (or witness), it is easy for us to check that a given string
belongs to the language. What’s important is that both the certificate’s size and the time to check are
polynomial with respect to the input size. The class of such problems is called NP. More formally:

Definition 7. We say that a language L ⊆ Σ∗ is of class NP, and write L ∈ NP, if there is a TM
M and two polynomials p(n) and q(n) such that for every input string x

x ∈ L ⇔ ∃c ∈ Σq(|x|) : M(x, c) = 1 ∧ tM(x, u) ≤ p(|x|). (2.3)

Basically, the two polynomials are needed to bound both the size of certificate c and the execution
time of M.

Observe that the definition only requires a (polynomially verifiable) certificate to exist only for
“yes” answers, while “no” instances (i.e., strings x such that x 6∈ L) might not be verifiable.

Theorem 10.

P ⊆ NP ⊆
∞⋃
k=1

DTIME(2n
k

).

5https://en.wikipedia.org/wiki/Independent_set_(graph_theory)
6https://en.wikipedia.org/wiki/Travelling_salesman_problem
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Proof. The first inclusion, P ⊆ NP, is trivial if we consider that definition 7 reduces to definition 6
if we set q(n) = 0, i.e., we accept an empty certificate: languages in P are polynomially verifiable
without need of certificates.
For the second inclusion, to decide L ∈ NP we just need a machine that iterates through all certificates
c ∈ Σq(|x|) and runs every time M(x, c), accepting x as soon as a pair (x, c) is accepted or rejecting x

when all certificates are exhausted. This can be done in some adequately large time 2n
k

.

2.3.1 Non-deterministic Turing Machines

An alternative definition of NP highlights the meaning of the class name, and will be very useful in
the future.

Definition 8. A non-deterministic Turing Machine (NDTM) is a TM with two different, independent
transition functions. At each step, the NDTM makes an arbitrary choice as to which function to apply.
Every sequence of choices defines a possible computation of the NDTM. We say that the NDTM
accepts an input x if at least one computation (i.e., one of the possible arbitrary sequences of choices)
terminates in an accepting state.

There are many different ways of imagining a NDTM: one that flips a coin at each step, one that
always makes the right choice towards acceptance, one that “doubles” at each step following both
choices at once. Note that, while a normal, deterministic TM is a viable computational model, a
NDTM is not, and has no correspondence to any current or envisionable computational device7.

Alternate definitions might refer to machines with more than two choices, with a subset of choices
for every input, and so on, but they are all functionally equivalent.

We can define the class NTIME(f) as the NDTM equivalent of class DTIME(f), just by replacing
the TM in Definition 5 with a NDTM:

Definition 9. Let f : N→ N be any computable function. We say that a language L ⊆ Σ∗ is of class
NTIME(f), and write L ∈ NTIME(f), if there is a NDTM M that decides L and its worst-case time,
as a function of input size, is dominated by f :

L ∈ DTIME(f) ⇔ ∃M : L(M) = L ∧ TM = O(f).

Indeed, the names “DTIME” and “NTIME” refer to the deterministic and non-deterministic refer-
ence machine. Also, the name NP means “non-deterministically polynomial (time),” as the following
theorem implies by setting a clear parallel between the definition of P and NP:

Theorem 11.

NP =

∞⋃
k=0

NTIME(nk).

Proof. See also Theorem 2.6 in the online draft of Arora-Barak. We can prove the two inclusione
separately.

Let L ∈ NP, as in Definition 7. We can define a NDTM N that, given input x, starts by non-
deterministically appending a certificate c ∈ Σq(|x|): every computation generates a different certificate.
After this non-deterministic part, we run the machine M from Definition 7 on the tape containing
(x, c). If x ∈ L, then at least one computation has written the correct certificate, and thus ends in an
accepting state. On the other hand, if x 6∈ L then no certificate can end in acceptance. Therefore, N
accepts x if and only if x ∈ L. The NDTM N performs q(|x|) steps to write the (non-deterministic)
certificate, followed by the p(|x|) steps due to the execution of M, and is therefore polynomial with
respect to the input. Thus, L ∈ NTIME(nk) for some k ∈ N.

Conversely, let L ∈ NTIME(nk) for some k ∈ N. This means that x can be decided by a NDTM
N in time q(|x|) = O(|x|k), during which it performs q(|x|) arbitrary binary choices. Suppose that

7Not even quantum computing, no matter what popular science magazines write.

22



x ∈ L, then there is an accepting computation by N . Let c ∈ {0, 1}q(|x|) be the sequence of arbitrary
choices done by the accepting computation of N (x). We can use c as a certificate in Definition 7, by
creating a deterministic TM M that uses c to emulate N (x)’s accepting computation by performing
the correct choices at every step. If x 6∈ L, then no computation by N (x) ends by accepting the input,
therefore all certificates fail, and M(x, c) = 0 for every c. Thus, all conditions in Definition 7 hold,
and L ∈ NP.

2.4 Reductions and hardness

Nobody knows if NP is a proper superset of P, yet. In order to better assess the problem, we need to
set up a hierarchy within NP in order to identify, if possible, languages that are harder than others.
To do this, we resort again to reductions.

Definition 10. Given two languages L,L′ ∈ NP, we say that L is polynomially reducible to L′, and
we write L≤p L′, if there is a function R : Σ∗ → Σ∗ such that

x ∈ L ⇔ R(x) ∈ L′

and R halts in polynomial time wrt |x|.

In other words, R maps strings in L to strings in L′ and strings that are not in L to strings that
are not in L′. Note that we require R to be computable in polynomial time, i.e., there must be a
polynomial p(n) such that R(x) is computed in at most p(|x|) steps. If L≤p L′, we say that L′ is at
least as hard as L. In fact, if we have a procedure to decide L′, we can apply it to decide also L with
“just” a polynomial overhead due to the reduction.

2.4.1 Example: Boolean formulas and the conjunctive normal form

Given n boolean variables x1, . . . , xn, we can define the following:

• a term, or literal, is a variable xi or its negation ¬xi;

• a clause is a disjunction of terms;

• finally, a formula is a conjunction of clauses.

Definition 11 (Conjunctive normal form). A formula f is said to be in conjunctive normal form with
n variables and m clauses if it can be written as

f(x1, . . . , xn) =

m∧
i=1

li∨
j=1

gij ,

where clause i has li terms, every literal gij is in the form xk or in the form ¬xk.

For instance, the following is a CNF formula with n = 5 variables and m = 4 clauses:

f(x1, x2, x3, x4, x5) = (x1 ∨ ¬x2 ∨ x4 ∨ x5) ∧ (x2 ∨ ¬x3 ∨ ¬x4)

∧(¬x1 ∨ ¬x2 ∨ x3 ∨ ¬x5) ∧ (¬x3 ∨ ¬x4 ∨ x5). (2.4)

Asking about the satisfiability of a CNF formula f amount at asking for a truth assignment such that
every clause has at least one true literal. For example, the following assignment, among many others,
satisfies (2.4):

x1 = x2 = true; x3 = x4 = x5 = false.

We can therefore say that f ∈ SAT.
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Definition 12 (k-CNF). If all clauses of a CNF formula have at most k literals in them, then we say
that the formula is k-CNF (conjunctive normal form with k-literal clauses).

For instance, (2.4) is 4-CNF and, in general, k-CNF for all k ≥ 4. It is not 3-CNF because it has
some 4-literal clauses. Sometimes, the definition of k-CNF is stricter, and requires that every clause
has precisely k literals. Nothing changes, since we can always write the same literal twice in order to
fill the clause up.

Definition 13. Given k ∈ N, the language k-SAT is the set of all (encodings of) satisfiable k−CNF
formulas.

Let us start with a “trivial” theorem:

Theorem 12. Given k ∈ N,
k-SAT≤p SAT.

Proof. Define the reduction R(x) as follows: given a string x, if it encodes a k-CNF formula, then
leave it as it is; otherwise, return an unsatisfiable formula.

The simple reduction takes into account the fact that k-SAT ⊆ SAT, therefore if we are able to
decide SAT, we can a fortiori decide k-SAT.

The following fact is less obvious:

Theorem 13.
SAT≤p 3-SAT.

Proof. Let f be a CNF formula. Suppose that f is not 3-CNF. Let clause i have li > 3 literals:

li∨
j=1

gij (2.5)

Let us introduce a new variable, h, and split the clause as follows,h ∨ li−2∨
j=1

gij

 ∧ (¬h ∨ gi,li−1 ∨ gili), (2.6)

by keeping all literals, apart from the last two, in the first clause, and putting the last two in the
second one. By construction, the truth assignments that satisfy (2.5) also satisfy (2.6), and viceversa.
In fact, if (2.5) is satisfied then at least one of its literals are true; but then one of the two clauses
of (2.6) is satisfied by the same literal, while the other can be satisfied by appropriately setting the
value of the new variable h. Conversely, if both clauses in (2.6) are satisfied, then at least one of the
literals in (2.5) is true, because the truth value of h alone cannot satisfy both clauses.

The step we just described transforms an li-literal clause into the conjunction of an (li − 1)-literal
clause and a 3-literal clause which is satisfiable if and only if the original one was; by applying it
recursively, we end up with a 3-CNF formula which is satisfiable if and only if the original f was.

As an example, the 4-CNF formula (2.4) can be reduced to the following 3-CNF with the two
additional variables h and k used to split its two 4-clauses:

f ′(x1, x2, x3, x4, x5, h, k) = (h ∨ x1 ∨ ¬x2) ∧ (¬h ∨ x4 ∨ x5) ∧ (x2 ∨ ¬x3 ∨ ¬x4)

∧(k ∨ ¬x1 ∨ ¬x2) ∧ (¬k ∨ x3 ∨ ¬x5) ∧ (¬x3 ∨ ¬x4 ∨ x5). (2.7)

Theorem 13 is interesting because it asserts that a polynomial-time algorithm for 3-SAT would be
enough for the more general problem. With the addition of Theorem 12, we can conclude that all
k-SAT languages, for k ≥ 3, are equivalent to each other and to the more general SAT.

On the other hand, it can be shown that 2-SAT ∈ P.
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Figure 2.1: Reduction of the 3-CNF formula (2.7) to a graph for INDSET.

2.4.2 Example: reducing 3-SAT to INDSET

Let us see an example of reduction between two problems coming from different domains: boolean
logic and graphs.

Theorem 14.
3-SAT≤p INDSET.

Proof. Let f be a 3-CNF formula. We need to transform it into a graph G and an integer k such that
G has an independent set of size k if and only if f is satisfiable.

Let us represent each of the m clauses in f as a separate triangle (i.e., three connected vertices) of
G, and let us label each vertex of the triangle as one of the clause’s literals. Therefore, G contains 3m
vertices organized in m triangles.

Next, connect every vertex labeled as a variable to all vertices labeled as the corresponding negated
variable: every vertex labeled “x1” must be connected to every vertex labeled “¬x1” and so on. Fig. 2.1
shows the graph corresponding to the 3-CNF formula (2.7): each bold-edged triangle corresponds to
one of the six clauses, with every node labeled with one of the literals. The dashed edges connect every
literal with its negations.

It is easy to see that the original 3-CNF formula is satisfiable if and only if the graph contains an
independent set of size k = m (number of clauses). Given the structure of the graph, no more than one
node per triangle can appear in the independent set (nodes in the same triangle are not independent),
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and if a literal appears in the independent set, then its negation does not (they would be connected by
an edge, thus not independent). If the independent set has size m, then we are ensured that one literal
per clause can be made true without contradictions. As an example, the six green nodes in Fig. 2.1
form an independent set and correspond to a truth assignment that satisfies f .

2.5 NP-hard and NP-complete languages

Definition 14. A language L is said to be NP-hard if for every language L′ ∈ NP we have that
L′≤p L.

In this Section we will show that NP-hard languages exist, and are indeed fairly common. The
definition just says that NP-hard languages are “harder” (in the polynomial reduction sense) than
any language in NP: if we were able to solve any NP-hard language in polynomial time then, by this
definition, we would have a polynomial solution to all languages in NP.

Furthermore, in this Section we shall see that the structure of NP is such that it is possible to
identify a subset of languages that are “the hardest ones” within NP: we will call these languages
NP-complete:

Definition 15. A language L ∈ NP that is NP-hard is said to be NP-complete.

In particular, we will show that SAT is NP-complete.

2.5.1 CNF and Boolean circuits

The Conjunctive Normal Form (CNF) is powerful enough to express any (unquantified) statement
about boolean variables. For instance, the following 2-variable formula is satisfiable only by variables
having the same truth value:

(¬x ∨ y) ∧ (x ∨ ¬y).

It therefore “captures” the idea of equality in the sense that it is true whenever x = y. In fact, the
clause (¬x ∨ y) means “x implies y.”

There are standard ways to convert any Boolean formula to CNF, based on some simple transfor-
mation rules, easily verifiable by testing all possible combinations of values — or just by reasoning:

a ∨ (b ∧ c) ≡ (a ∨ b) ∧ (a ∨ c)
a ∧ (b ∨ c) ≡ (a ∧ b) ∨ (a ∧ c)
¬(a ∨ b) ≡ ¬a ∧ ¬b
¬(a ∧ b) ≡ ¬a ∨ ¬b
a→ b ≡ ¬a ∨ b.

Another convenient way to represent a Boolean formula as dependency of some outputs from some
inputs is by means of a Boolean circuit, where logical connectives are replaced by gates. Fig. 2.2 shows
the gates corresponding to the fundamental Boolean connectives, together with their truth tables and
CNF formulae.

We only consider combinational Boolean circuits, i.e., circuits that do not preserve states: there are
no “feedback loops”, and gates can be ordered so that every gate only receives inputs from previous
gates in the order.

Any combinational Boolean circuit can be “translated” into a CNF formula, in the sense that the
formula is satisfiable by all and only the combinations of truth values that satisfy the circuit. Given a
Boolean circuit with n inputs x1, . . . , xn and m outputs y1, . . . , ym and l gates G1, . . . , Gl:

• add one variable for every gate whose output is not an output of the whole circuit;

• once all gate inputs and outputs, write the conjunction of all CNF formulae related to all gates.
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1 0
0 1

Y = ¬A
≡ (¬Y ∨ ¬A) ∧ (Y ∨A)

A

B

Y
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Y = A ∧B
≡

(
¬Y ∨ (A ∧B)

)
∧
(
Y ∨ ¬(A ∧B)

)
≡ (¬Y ∨A) ∧ (¬Y ∨B) ∧ (Y ∨ ¬A ∨ ¬B)

A

B

Y

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

Y = A ∨B
≡

(
¬Y ∨ (A ∨B)

)
∧
(
Y ∨ ¬(A ∨B)

)
≡ (¬Y ∨A ∨B) ∧

(
Y ∨ (¬A ∧ ¬B)

)
≡ (¬Y ∨A ∨B) ∧ (Y ∨ ¬A) ∧ (Y ∨ ¬B)

Figure 2.2: A NOT gate (top), an AND gate (middle) and an OR gate (bottom), their truth tables,
and derivations of the CNF formulae that are satisfied if and only if their variables are in the correct
relation (i.e., only by combinations of truth values shown in the corresponding table).

x1

x2

y1

y2
g1

g2

(x2 ∨ g1) ∧ (¬x2 ∨ ¬g1)

∧ (¬g2 ∨ x1) ∧ (¬g2 ∨ g1) ∧ (g2 ∨ ¬x1 ∨ ¬g1)

∧ (y1 ∨ g2) ∧ (¬y1 ∨ ¬g2)

∧ (¬y2 ∨ g1 ∨ g2) ∧ (y2 ∨ ¬g1) ∧ (y2 ∨ ¬g2)

Figure 2.3: A Boolean circuit and its CNF representation: the CNF formula is satisfiable by precisely
the combinations of truth values that are compatible with the logic gates.
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Fig. 2.3 shows an example: a Boolean circuit with 2 inputs, 2 outputs and 2 ancillary variables asso-
ciated to intermediate gates, together with the corresponding CNF formula. This formula completely
expresses the dependency between all variables in the circuit, and by replacing truth assignment we
can use it to express various questions about the circuit in terms of satisfiability. For example:

1. Is there a truth assignment to inputs x1, x2 such that the outputs are both 0?
We can reduce this question to SAT by replacing y1 = y2 = 0 (and, of course, ¬y1 = ¬y2 = 1) in
the CNF of Fig. 2.3, and by simplifying we obtain

(x2 ∨ g1) ∧ (¬x2 ∨ ¬g1) ∧ (¬g2 ∨ x1) ∧ (¬g2 ∨ g1) ∧ (g2 ∨ ¬x1 ∨ ¬g1) ∧ (g2) ∧ (¬g1) ∧ (¬g2),

which is clearly not satisfiable because of the conjunction g2 ∧ ¬g2.

2. If we fix x1 = 1, is it possible (by assigning a value to the other input) to get y2 = 1?
To answer this let us replace x1 = y2 = 1 and ¬x1 = ¬y2 = 0 into the CNF and simplify:

(x2 ∨ g1) ∧ (¬x2 ∨ ¬g1) ∧ (¬g2 ∨ g1) ∧ (g2 ∨ ¬g1) ∧ (y1 ∨ g2) ∧ (¬y1 ∨ ¬g2) ∧ (g1 ∨ g2).

The formula is satisfiable by x2 = y1 = 0, g1 = g1 = 1, so the answer is “yes, just set the other
input to 0”.

Note that in this second case we can “polynomially” verify that the CNF is satisfiable by replacing
the values provided in the text. In general, on the other hand, verifying the unsatisfiability of a CNF
can be hard, because we cannot provide a certificate.

2.5.2 Using Boolean circuits to express Turing Machine computations

As an example, consider the following machine with 2 symbols (0,1) and 2 states plus the halting state,
with the following transition table:

0 1
s1 1, s1,→ 1, s2,←
s2 0, s1,← 0, HALT,→

Suppose that we want to implement a Boolean circuit that, receiving the current tape symbol and
state as an input, provides the new tape symbol, the next state and direction as an output. We can
encode all inputs of this transition table in Boolean variables as follows:

• the input, being in {0, 1}, already has a canonical Boolean encoding, let us call it x1;

• the two states can be encoded in a Boolean variable x2 with an arbitrary mapping, for instance:

0 7→ s1, 1 7→ s2.

The outputs, that encode the entries of the transition table can be similarly mapped:

• the new symbol on the tape is, again, a Boolean variable y1;

• the new state requires two bits, because we need to encode the HALT state. Therefore, we will
need an output y2 that encodes the continuation states as before, and an output y3 that is true
when the machine must halt. Therefore, the mapping from y2, y3 to the new state is

00 7→ s1, 10 7→ s2, 01 7→ HALT,

with the combination y2 = y3 = 1 left unused;

• the direction is arbitrarily mapped on the output variable y4 ,e.g.,

0 7→←, 1 7→→ .
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x1

x2

y1 y2 y3 y4

Figure 2.4: The Boolean circuit that implements the transition table of the TM described in the text.

Fig. 2.4 shows the Boolean circuit that outputs the new machine configuration (encodings of state,
symbol and direction) based on the current (encoded state and symbol) pair.

The above example suggests that a step of a Turing machine can be executed by a circuit, and
that by concatenating enough copies of this circuit we obtain a circuit that executes a whole TM
computation:

Lemma 3. Let M be a polynomial-time machine whose execution time on inputs of size n is bounded
by polynomial p(n). Then there is a polynomial P (n) such that for every input size n there is a Boolean
circuit C, whose size (in terms, e.g., of number of gates) bound by P (n), that performs the computation
of M.

Proof outline. Let M have |Q| = m states. Let us fix the input size n. Then we know that M halts
within p(n) steps. Since every step changes the current position on the tape by one cell, the machine
will never visit more than 2p(n) + 1 cells (considering the two extreme cases of the machine always
moving in the same direction). The complete configuration of the machine at a given point in time is
therefore described by:

• 2p(n) + 1 boolean variables (bits) to describe the content of the relevant portion of the tape;

• |Q| bits to describe the state;

• 2p(n) + 1 bits to describe the current position on the tape (one of the bits is 1, the others are 0).

Of course, more compact representations are possible, e.g., by encoding states and positions in base-2
notation. By using building blocks such as the transition table circuit of Fig. 2.4, we can actually build
a Boolean circuit C ′ that accepts as an input the configuration of M at a given step and outputs the
new configuration; this circuit has a number of inputs, outputs and gates that are polynomial with
respect to n.

By concatenating p(n) copies of C ′ (see Fig. 2.5), we compute the evolution ofM for enough steps
to emulate the execution on any input of size n. By inserting the initial configuration on the left-hand
side, the circuit outputs the final configuration.

If the size of every block C ′ is bound by polynomial q(n), then the size of the whole circuit is bound
by P (n) = p(n) · q(n), therefore it is still polynomial.

Note that the proof is not complete: in particular, the size of C ′ is only suggested to be polynomial,
but we would need to look much deeper in the structure of C ′ to be sure of that.

Lemma 4. Lemma 3 also works if the TM is non-deterministic.
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Figure 2.5: (left) C ′ is a Boolean circuit with a polynomial number of inputs, gates and outputs with
respect to the size of the TM’s input x. It transforms a Boolean representation of a configuration of
the TM into the configuration of the subsequent step. (right) By concatenating p(|x|) copies of C ′, we
get a polynomial representation of the whole computation of the TM on input x.
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Figure 2.6: Analogous to Fig. 2.5 for a NDTM. (left) Every C ′ block has an additional input that
allows the selection of the non-deterministic choice for the step that it controls. (right) The whole
circuit has p(n) additional Boolean inputs x1, . . . , xp(n): every combination of choice bits represents

one of the 2p(n) computations of the NDTM.
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Proof outline. See Fig. 2.6: in order to carry on a NDTM’s computation, we just need to modify the
circuit C ′ of Lemma 3 to accept one further input, and use it to choose between the two possible
outcomes of the transition table. Let us call x1, . . . , xp(n) the additional input bits of the daisy-chained

C ′ blocks. Each of the 2p(n) combinations of these inputs determines one of the possible compuattions
of the NDTM.

Knowing this, we can see how any polynomial computation of a NDTM can be represented by a
CNF formula that is only satisfiable if the NDTM accepts its input.

Theorem 15 (Cook’s Theorem). SAT is NP-hard.

Proof outline. To prove this, we need to pick a generic language L ∈ NP and show that L≤p SAT.
Let N be the NDTM that decides x ∈ L within the polynomial time bound p(|x|).
Let x ∈ Σn be a string of length n. By Lemma 4, we can build a Boolean circuit C with polyno-

mial size that, for any truth value combination of the inputs x1, . . . , xp(n), performs one of the 2p(n)

computations of N .
We can transform the Boolean circuit C into a (still polynomial-size) CNF formula fC by means

of the procedure outlined in Sec. 2.5.1.
At this point, the question whether x ∈ L or not, which can be expressed as “is there at least one

computation of N (x) that ends in an accepting state?”, can be answered by assigning the proper truth
values to some variables in fC :

• the “initial state” inputs are set to the representation of the initial state;

• the “input tape” inputs are set to the representation of string x on N ’s tape;

• the “initial position” inputs are set to the representation of N ’s initial position on the tape;

• the variables corresponding to the “final state” outputs are set to the representation of the
accepting halting state.

After simplifying for these preset values, the resulting CNF formula f ′C still has a lot of free variables,
among which are the choice bits x1, . . . , xp(n).

By construction, the CNF formula f ′C is satisfiable if and only if there is a computation of N that
starts from the initial configuration with x on the tape and ends in an accepting state. Therefore,

x ∈ L ↔ f ′C ∈ SAT.

Of course, we already know that SAT ∈ NP, hence the following:

Corollary 2. SAT is NP-complete.

2.6 Other NP-complete languages

NP-complete languages have an important role in complexity theory: they provide an upper bound
for how hard can a language in NP be.

Since the composition of two polynomial-time reductions is still a polynomial-time reduction, we
have the following:

Lemma 5. If L is NP-hard and L≤p L′, then also L′ is NP-hard too.

So, whenever we reduce an NP-complete language to any other language L ∈ NP, we can conclude
that L′ is NP-complete too.

From Theorem 13, and from the fact that 3-SAT ∈ NP, we get:
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Lemma 6. 3-SAT is NP-complete.

Next, from Theorem 14, and from the fact that INDSET ∈ NP, we get:

Lemma 7. INDSET is NP-complete.

Let us introduce a few more problems in NP.

CLIQUE — Given an undirected graph G = (V,E) and an integer k ∈ N, does G have a complete
subgraph (a “clique”) of size (at least) k?

VERTEX COVER — Given an undirected graph G = (V,E) and an integer k ∈ N, is there a vertex
subset V ′ ⊆ V of size (at most) k such that every edge in E has at least one endpoint in V ′?

INTEGER LINEAR PROGRAMMING (ILP) — Given a set of m linear inequalities with in-
teger coefficients on m integer variables, is there at least a solution? In other terms, given n×m
coefficients aij ∈ Z and m bounds bi ∈ Z, does the following set of inequalities

a11x1 + a12 + . . . + a1nxn ≤ b1
a21x1 + a22 + . . . + a2nxn ≤ b2

...
...

. . .
...

...
am1x1 + am2 + . . . + amnxn ≤ bm

have a solution with x1, . . . , xn ∈ Z?

VERTEX COLORING — Given an undirected graph G = (V,E) and an integer k ∈ N, is there
an assignment from V to {1, . . . , k} (“k colors”) such that two connected vertices have different
colors?

SET COVER — Given a finite set W , n subsets S1, . . . , Sn and an integer k ∈ N, are there k subsets
Si1 , Si2 , . . . , Sik such that their union is W?

It is easy to see that all such languages are in NP.
Observe that a clique of size k in G = (V,E) corresponds to an independent set of the same size

in the complementary graph Ḡ = (V, Ē) (where Ē is the complement of E), and viceversa, therefore
complementing E is a polynomial-time reduction from INDSET to CLIQUE:

Lemma 8. CLIQUE is NP-complete.

Also, observe that if V of size k is an independent set in G = (V,E), then its complement V \ V ′
is an independent set of size |V | − k and viceversa. Therefore:

Lemma 9. VERTEX COVER is NP-complete.

Here follow a few slightly more complex reductions.

Theorem 16. SET COVER is NP-complete.

Proof. First, SET COVER is clearly in NP.
We start from VERTEX COVER. Given a graph G = (V,E), let W = E in the SET COVER

definition, and map every vertex i ∈ V to set

Si = {e ∈ E : i ∈ e}

of all edges that have vertex i as an endpoint. Solving SET COVER for k subsets amounts to finding
k subsets (vertices of G) such that every element of W (every edge of G) belongs to at least one of
them (has an endpoint in one of these vertices).
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Theorem 17. ILP is NP-complete.

Proof. First, ILP is clearly in NP.
We start from VERTEX COVER. Given a graph G = (V,E), and an integer k ∈ N, we can set up

some constraints such that we create an integer program whose solutions imply a k-vertex cover for G
and vice versa.

Let’s create an integer program vith one variable per vertex in V . We want these variables to
encode the inclusion of a vertex in the cover (xi = 1 if vertex i is in G’s cover, 0 otherwise). Since in
INTEGER PROGRAMMING all variables can be arbitrary integers, we restrict them between 0 and
1 by setting the inequalities −xi ≤ 0 and xi ≤ 1 for i = 1, . . . , |V |. The requirement that x1, . . . , x|V |
is a cover is implemented by introducing a constraint for every edge i, j ∈ E that requires at least one
of the endpoints to be 1: xi + xi ≥ 1. Finally, the requirement that the size of the cover is at most k
is encoded in x1 + x2 + · · ·+ x|V | ≤ k.

In conclusion, the following integer program has a solution if and only if the corresponding graph
has a cover of size k: 

− xi ≤ 0 ∀i ∈ V
xi ≤ 1 ∀i ∈ V

− xi − xj ≤ −1 ∀{i, j} ∈ E
x1 + . . . + x|V | ≤ k

Theorem 18. VERTEX COLORING is NP-complete.

Proof. Let’s start from a 3-CNF formula f and build a graph that is 3-colorable if and only if f is
satisfiable.

The graph will be composed of separate “gadgets” (subgraphs) that capture the semantics of a
3-CNF formula: the construction can be followed in Fig. 2.7.

The first gadget is a triangle whose nodes will be called T (“true”), F (“false”) and B (“base”).
Among the three colors, the one that will be assigned to node T will be considered to correspond to
assigning the value “true” to a node. Same for F . The three nodes are used to “force” specific values
upon other nodes of the graph.

The second set of gadgets is meant to assign a node to every literal in the formula. For every
variable xi, there will be two nodes, called xi and ¬xi. Since we are interested to assigning them truth
values, we connect all of them to node B, so that they are forced to assume either the “true” or the
“false” color. Furthermore, we connect node xi to ¬xi to force them to take different colors.

Next, every 3-literal clause is represented by an OR gadget whose “exit” node is forced to have color
“true” by being connected to B and to F . The three “entry” nodes of the gadget are connected to the
nodes corresponding to the clause’s literals. We can easily verify that every OR gadget is 3-colorable
if and only if at least one of the literal nodes it is connected to is not false-colored.

By construction, if f is a satisfiable 3-CNF formula, then it is possible to color the literal nodes so
that every OR gadget has at least one true-colored node at its input, and therefore the graph will be
colorable. If, otherwise, f is not satisfiable, then every coloring of the literal nodes will result in an
OR gadget connected to three false-colored literals, and therefore will not be colorable.

Other examples can be found in Karp’s seminal paper from 19728 in which he lists 21 NP-complete
problems. The interested reader is invited to have a look at the paper and check some of his reductions.

A special mention goes to the GRAPHH ISOMORPHISM language: given two undirected graphs
G1 = (V1, E1) and G2 = (V2, E2), are they isomorphic (e.g., is there a bijection f : V1 → V2 such that
f(E1) = E2)? Obviously, GRAPH ISOMORPHISM ∈ NP: the bijection, if it exists, can be checked

8Richard M. Karp, Reducibility among Combinatorial Problems, 1972
http://cgi.di.uoa.gr/~sgk/teaching/grad/handouts/karp.pdf
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Figure 2.7: Reduction of a 3-CNF formula to the VERTEX COLORING problem with k = 3 colors.
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Figure 2.8: What we know up to now. If any of the NP or coNP-complete problems were to be
proven in P, then all sets would collapse into it.

in polynomial time. However, it is believed that the language is not complete. In fact, there is a
quasi-polynomial9 algorithm that decides it.

2.7 An asymmetry in the definition of NP: the class coNP

Observe that the definition of NP introduces an asymmetry in acceptance and rejection that is rem-
iniscing of the asymmetry between RE and coRE languages. Namely, while we require only one
accepting computation to accept x ∈ L, in order to reject it we require that all computations reject it.

This means that, while x ∈ L admits a polynomial certificate, and therefore is verifiable even by
a deterministic polynomial checker, the opposite x 6∈ L does not: there is no hope for a polynomial
checker to become convinced that x 6∈ L.

Definition 16. The symmetric class to NP is called coNP: the class of languages that have a
polynomially verifiable certificate for strings that do not belong to the language.

coNP = {L ⊆ Σ∗ : L̄ ∈ NP}.

Clearly, P ∈ NP ∩ coNP because in P everything is polynomially verifiable. Currently, we don’t
know if the inclusion is strict or not.

Fig. 2.8 summarizes what has been said in this chapter.

9more than polynomial, but less than exponential, e.g., DTIME(2c1(logn)c2 )
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Chapter 3

Other complexity classes

Not all languages are NP or coNP. It is possible to define languages with higher and higher complexity.

3.1 The exponential time classes

It is possible to define classes that are analog to P and NP for exponential, rather than polynomial,
time bounds:

Definition 17.

EXP =

∞⋃
c+1

DTIME
(
2n

c)
, NEXP =

∞⋃
c=1

NTIME
(
2n

c)
,

and, of course,
coNEXP = {L ⊆ Σ∗ : L̄ ∈ NEXP}.

In short, EXP is the set of languages that are decidable by a deterministic Turing machine in
exponential time (where “exponential” means a polynomial power of a constant, e.g., 2); NEXP is
the same, but decidable by a NDTM. In other words, a language L is in NEXP when x ∈ L iff there
is an exponential-sized (wrt x) certificate verifiable in exponential time. Finally, coNEXP is the set
of exponentially-disprovable languages.

Cominq up with languages that are in these classes, but not in NP or coNP is harder. One
“natural” language is the equivalence of two regular expressions under specific limitations to their
structure.

The following result should be immediate:

Lemma 10.
P ⊆ NP ⊆ EXP ⊆ NEXP.

Proof. The only non trivial inclusion should be NP ⊆ EXP, but we just need to note that a non-
deterministic machine with polynomial time bound can clearly be simulated by a deterministic machine
in exponential time by performing all computations one after the other.

An important result is that the analysis of the relationship between EXP and NEXP can help
wrt the P vs. NP problem:

Theorem 19. If EXP 6= NEXP, then P 6= NP.

Proof. We will prove the converse. Suppose that P = NP, and let L ∈ NEXP. We shall build a
deterministic TM that computes L in exponential time.

Since L ∈ NEXP, there is a NDTM M that decides x ∈ L within time bound 2|x|
c

.
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Figure 3.1: The exponential classes. The inner part is shown in greater detail in Fig. 2.8.

We cannot hope to reduce an exponential computation to polynomial time. However, we can
exponentially enlarge the input. Consider the language

L′ =
{(
x, 12

|x|c )
: x ∈ L

}
.

The language L′ is obtained from L by padding all of its strings with an exponentially-sized string of
1’s. Now, consider the following NDTM M′ that decidesy ∈ L′:

• Check whether y is in the form
(
x, 12

|x|c )
for some x (not necessarily in L); if not, REJECT

because y 6∈ L′;

• Clean the padding 1’s, leaving only x on the tape;

• Execute M(x) and ACCEPT or REJECT accordingly.

Now, each of the three outlined phases of M′ have an exponential execution time wrt x, but a poly-
nomial time wrt the much larger padded input y. Therefore, L′ ∈ NP.

Since we assumed P = NP, then L′ ∈ P, therefore there is a deterministic TM N ′ that decides L′

in polynomial time (wrt the padded size of strings in L′, of course).
But then we can define the deterministic TM that, on input x, pads it with 2|x|

c

ones (in exponential
time), then runs N ′ on the resulting padded string. This machine is deterministic and accepts L in
exponential time, therefore L ∈ EXP.

Fig. 3.1 summarizes the addition of the exponential classes.

3.2 Randomized complexity classes

Observe that the definition of NP only requires one computation out of an exponentially large number
to accept the input. Although only one computation might be accepting, there might be better cases
in which we are guaranteed that a given fraction of the computations accept the input (if it belongs
to the language).

Ley us define the following complexity class:
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Definition 18. Let L ∈ NP, and let 0 < ε < 1. We say that L is randomized polynomial time, and
write L ∈ RP, if there is a NDTM M that accepts L in polynomial time and, whenever x ∈ L,

Number of accepting computations of M(x)

Number of computations of M(x)
≥ ε. (3.1)

Obviously, if x 6∈ L then there are no accepting computations. In other words, if L ∈ RP we are
guaranteed that, whenever x ∈ L, a sizable number of computations accept it.

Theorem 20.
P ⊆ RP ⊆ NP.

Proof. The second inclusion derives from the definition; for the first one, just observe that a determin-
istic machine can be seen as a NDTM where all computation coincide, therefore either all computations
accept (and the bound (3.1) is satisfied) or all reject.

Equivalently, if we define NP in terms of a deterministic TM M and polynomial-size certificates
c ∈ {0, 1}p(|x|), we can define L ∈ RP if

|{c ∈ {0, 1}p(|x|) : M(x, c) = 1}|
2p(|x|)

≥ ε.

We can see this definition in terms of probability of acceptance: suppose that x ∈ L, and let us generate
a random certificate c. Then, Pr

(
M(x, c) = 1

)
≥ ε. Conversely, if x 6∈ L then Pr

(
M(x, c) = 1

)
= 0,

because x has no acceptance certificates.
This fact suggests a method to improve the probability of acceptance at will. On input x:

• repeat N times:

– generate a random certificate c ∈ {0, 1}p(|x|) by randomly tossing a coin p(|x|) times;

– if M(x, c) = 1, then ACCEPT x and halt.

• REJECT x and halt.

In other words, if the machine keeps rejecting x for many certificates, keep trying for N times, where
N is an adjustable parameter.

The probability that, given x ∈ L the machine rejects it N times (and therefore x is finally rejected)
is

Pr(REJECT x|x ∈ L) ≤ (1− ε)N .

Therefore, by increasing the number N of repetitions, the probability of an error (rejecting x even
though x ∈ L) can be made arbitrarily small. Of course, the opposite error (accepting x when x 6∈ L)
is not possible because if x 6∈ L there are no accepting certificates.

This results suggests that the definition of RP does not depend on the actual value of ε, as long as
it is strictly included between 0 and 1. Observe, in fact, that if ε = 0 then we are not setting any lower
bound on the number of accepting computation, and therefore the definition would coincide with that
of NP, while if ε = 1 then we would require that all computations are accepting, thus rendering the
certificate useless, and we would be redefining P.
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Part II

Questions and exercises
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Appendix A

Self-assessment questions

This chapter collects a few questions that students can try answering to assess their level of preparation.

A.1 Computability

A.1.1 Recursive and recursively enumerable sets

1. Why is every finite set recursive?
(Hint: we need to check whether n is in a finite list)

2. Try to prove that if a set is recursive, then its complement is recursive too.
(Hint: invert 0 and 1 in the decision function’s answer)

3. Let S be a recursively enumerable set, and let algorithm A enumerate all elements in S. Prove
that, if A lists the elements of S in increasing order, then S is recursive.
(Hint: what if n 6∈ S? Is there a moment when we are sure that n will never be listed by A?)

A.1.2 Turing machines

1. Why do we require a TM’s alphabet Σ and state set Q to be finite, while we accept the tape to
be infinite?

2. What is the minimum size of the alphabet to have a useful TM? What about the state set?

3. Try writing machines that perform simple computations or accept simply defined strings.

A.2 Computational complexity

A.2.1 Definitions

1. Why introduce non-deterministic Turing machines, if they are not practical computational mod-
els?

2. Why do we require reductions to carry out in polynomial time?

3. Am I familiar with Boolean logic and combinational Boolean circuits?
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A.2.2 P vs. NP

1. Why is it widely believed that P 6= NP?

2. Why is it widely hoped that P 6= NP?

A.2.3 Other complexity classes

1. Why are classes EXP and NEXP relatively less studied than their polynomial counterparts?

2. What guarantees does RP add to make its languages more tractable than generic NP languages?
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Appendix B

Exercises

Preliminary observations

Since the size of the alphabet, the number of tapes or the fact that they are infinite in one or both
directions have no impact on the capabilities of the machine and can emulate each other, unless the
exercise specifies some of these details, students are free to make their choices.

As for accepting or deciding a language, many conventions are possible. The machine may:

• erase the content of the tape and write a single “1” or “0”;

• write “1” or “0” and then stop, without bothering to clear the tape, with the convention that
acceptance is encoded in the last written symbol;

• have two halting states, halt-yes and halt-no;

• any other unambiguous convention;

with the only provision that the student writes it down in the exercise solution.
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Exercise 1

For each of the following classes of Turing machines, decide whether the halting problem is computable
or not. If it is, outline a procedure to compute it; if not, prove it (usually with with a reduction from
the general halting problem). Unless otherwise stated, always assume that the non-blank portion of
the tape is bounded, so that the input can always be finitely encoded if needed.
1.1) TMs with 2 symbols and at most 2 states (plus the halting state), starting from an empty (all-
blank) tape.
N ote: in early versions the tape wasn’t mentioned. My bad.
1.2) TMs with at most 100 symbols and 1000000 states.
1.3) TMs that only move right;
1.4) TMs with a circular, 1000-cell tape.
1.5) TMs whose only tape is read-only (i.e., they always overwrite a symbol with the same one);

Hint — Actually, only one of these cases is uncomputable. . .

Solution 1

The following are minimal answers that would guarantee a good evaluation on the test.
1.1) The definition of the machine meet the requirements for the Busy Beaver game; Since we know
the BB for up to 4 states, it means that every 2-state, 2-symbol machine has been analyzed on an
empty tape, and its behavior is known. Therefore the HP is computable for this class of machines.
1.2) As we have seen in the lectures, 100 symbols and 1,000,000 states are much more than those needed
to build a universal Turing machine U . If this problem were decidable by a machine, say H1,000,000,
then we could solve the general halting problem “doesM halt on input s” by asking H1,000,000 whether
U would halt on input (M, s) or not. In other words, we could reduce the general halting problem to
it, therefore it is undecidable.
1.3) If the machine cannot visit the same cell twice, the symbol it writes won’t have any effect on its
future behavior. Let us simulate the machine; if it halts, then we output 1. Otherwise, sooner or later
the machine will leave on its left all non-blank cells of the tape: from now on, it will only see blanks,
therefore its behavior will only be determined by its state. Take into account all states entered after
this moment; as soon as a state is entered for the second time, we are sure that the machine will run
forever, because it is bound to repeat the same sequence of states over and over, and we can interrupt
the simulation and output 0; if, on the other hand, the machine halts before repeating any state, we
output 1.
1.4) As it has a finite alphabet and set of states (as we know from definition), the set of possible
configurations of a TM with just 1000 cells is fully identified by (i) the current state, (ii) the current
position, and (iii) the symbols on the tape, for a total of |Q|×1000×|Σ|1000 configurations. While this
is an enormous number, a machine running indefinitely will eventually revisit the same configuration
twice. So we just need to simulate a run of the machine: as soon as a configuration is revisited, we
can stop simulating the machine and return 0. If, on the other hand, the simulation reaches the halt
state, we can return 1.
1.5) Let n = |Q| be the number of states of the machine. Let us number the cells with consecutive
integer numbers, and consider the cells a and b that delimit the non-null portion of the tape. Let us
simulate the machine. If the machine reaches cell a−(n+1) or b+n+1, we will know that the machine
must have entered some state twice while in the blank portion, therefore it will go on forever: we can
stop the simulation and return 0. If, on the other hand, the machine always remains between cell
a−n and b+n, then it will either halt (then we return 1) or revisit some already visited configuration
in terms of current cell and state; in such case we know that the machine won’t stop because it will
deterministically repeat the same steps over and over: we can then stop the simulation and return 0.
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Exercise 2

For each of the following properties of TMs, say whether it is semantic or syntactic, and prove whether
it is decidable or not.
2.1) M recognizes all words with an ‘a’ in them.
2.2) M always halts within 100 steps.
2.3) M either halts within 100 steps or never halts.
2.4) M accepts all words from the 2018 edition of the Webster’s English Dictionary.
2.5) M never halts in less than 100 steps.
2.6) M is a Turing machine.
2.7) M recognizes strings that encode a Turing machine (according to some predefined encoding
scheme).
2.8) M is a TM with at most 100 states.

Solution 2

2.1) The property is semantic, since it does not depend on the specific machine but only on the
language that it recognizes. The property is also non-trivial (it can be true for some machines, false
for others), therefore it satisfies the hypotheses of Rice’s theorem. We can safely conclude that it is
uncomputable.
Note: the language “All words with an ‘a’ in them” is computable. What we are talking about here is
the “language” of all Turing machines that recognize it.
2.2) Since we can always add useless states to a TM, given a machine M that satisfies the property,
we can always modify it into a machine M ′ such that L(M) = L(M ′), but that runs for more than 100
steps. Therefore the property is not semantic. It is also decidable: in order to halt within 100 steps,
the machine will never visit more than 100 cells of the tape in either direction, therefore we “just”
need to simulate it for at most 100 steps on all inputs of size at most 200 (a huge but finite number)
and see whether it always halts within that term or not.
2.3) Again, the property is not semantic: different machines may recognize the same language but
stop in a different number of steps. In this case, it is clearly undecidable: just add 100 useless states
at the beginning of the execution and the property becomes “M never halts”.
2.4) The property is semantic, since it only refers to the language recognized by the machine, and is
clearly non-trivial. Therefore it satisfies Rice’s Theorem hypotheses and is uncomputable. Note: as
in point 2.1, the language “all words in Webster’s” is computable, but we aren’t able to always decide
whether a TM recognizes it or not.
2.5) This is the complement of property 2.2, therefore not semantic and decidable.
2.6) The property is trivial, since all TMs trivially have it. Therefore, it is decidable by the TM that
always says “yes” with no regard for the input.
2.7) The property is semantic because it refers to a specific language (strings encoding TMs). It is
not trivial: even if the encoding allowed for all strings to be interpreted as a Turing machine, the only
machines that possess the property would be those that recognize every string.
2.8) Deciding whether a machine has more or less than 100 states is clearly computable by just
scanning the machine’s definition and counting the number of different states. The property is not
semantic.
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Exercise 3

3.1) Complete the proof of Theorem 8 by writing down, given a positive integer n, an n-state Turing
machine on alphabet {0, 1} that starts on an empty (i.e., all-zero) tape, writes down n consecutive
ones and halts below the rightmost one.
3.2) Test it for n=3.

Solution 3

3.1) Here is a possible solution:

0 1
s1 1, right, s2 1, right, halt
s2 1, right, s3 —

...
si 1, right, si+1 —

...
sn−1 1, right, sn —
sn 1, left, s1 —

Entries marked by “—” are irrelevant, since they are never used. Any state can be used for the final
move.
3.2) For n = 3, the machine is

0 1
s1 1, right, s2 1, right, halt
s2 1, right, s3 —
s3 1, left, s1 —

Here is a simulation of the machine, starting on a blank (all-zero) tape:

. . . 0 0 0 0 0 0 0 . . .

s1

. . . 0 0 1 0 0 0 0 . . .

s2

. . . 0 0 1 1 0 0 0 . . .

s3

. . . 0 0 1 1 1 0 0 . . .

s1

. . . 0 0 1 1 1 0 0 . . .

halt
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Exercise 4

Show that SAT≤p ILP by a direct reduction.

Hint — Given a CNF formula f , represent its variables as variables in an integer program. Use
constraints to force every variable in {0, 1} and other constraints to force every clause to have at least
one true literal.

Exercise 5

Consider the following Boolean circuit:

x1

x2

y1

y2

5.1) Write down the CNF formula that is satisfied by all and only combinations of input and output
values compatible with the circuit.
5.2) Is it possible to assign input values to x1, x2 such that y1 = 0 and y2 = 1? Provide a CNF formula
that is satisfiable if and only if the answer is yes.
5.3) Is it possible to assign input values to x1, x2 such that y1 = 1 and y2 = 0? Provide a CNF formula
that is satisfiable if and only if the answer is yes.

Exercise 6

Consider the SET PACKING problem: given n sets S1, . . . , Sn and an integer k ∈ N, are there k sets
Si1 , . . . , Sik that are mutually disjoint?
6.1) Prove that SET PACKING ∈ NP.
6.2) Prove that SET PACKING is NP-complete.

Hint — You can prove the completeness by reduction of INDEPENDENT SET.
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